БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

МЕЩАНСКАЯ ДРАМА, жанр драма-тич. произведений.
МЛАДОАФГАНЦЫ, участники нац. патриотич. движения.
МОРАЛЬ (лат. moralis - нравственный, от mos, мн. ч. mores - обычаи, нравы, поведение).
МУДАНЬЦЗЯН, город на С.-В. Китая, в пров. Хэйлунцзян.
НАМПХО, город на С.-З. КНДР, в пров. Пхёнан-Намдо.
КРАСНАЯ ГОРБАТОВСКАЯ ПОРОДА крупного рогатого скота.
НИЖНИЕ ПЛАНЕТЫ, две большие планеты Солнечной системы - Меркурий и Венера.
ОБМЕН ТЕЛЕГРАФНЫЙ, суммарное количество телеграмм.
ОРЕНБУРГ (с 1938 по 1957 - Ч к а л о в), город, центр Оренбургской области РСФСР.
ПАНАМЕРИКАНСКИЙ COЮЗ, создан в 1889 на 1-й Панамериканской конференции.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

240186832560058839381ные (нем. - man); вопросительные ("кто", "что" и др.).

Класс М- лишён грамматич. и лексико-семантич. единства, но традиционно выделяется в грамматиках (обычно как часть речи). М.- ядро грамматич. системы имени (имеет, как правило, все грамматич. категории имени, кроме степеней сравнения). М. или семантически эквивалентные элементы есть во всех языках.

Лит.: Майтинская К. Е., Местоимения в языках разных систем, М., 1969; Benveniste Е., La nature des pronomes, в кн.: For Roman Jakobson, The Hague, 1956; Russell В., An inquiry into meaning and truth, N. Y., 1967.

Е. В. Падучева, В.М. Живов.

МЕСТООБИТАНИЕ, участок суши или водоёма, занятый организмом, группой особей одного вида, биоценозом или синуэией и обладающий всеми необходимыми для их существования условиями (климат, рельеф, почва, пища и др.). М. вида - совокупность отвечающих его экологич. требованиям участков в пределах видового ареала; М. популяции - часть М. вида, обеспечивающая существование отдельной популяции', М. особи -конкретный участок, занятый данным индивидом во всех фазах его развития. Различают также М. семьи, стада, стаи или колонии животных, а также зарослей, куртин и др. совокупностей растений. По широте использования М. выделяют стенотопные организмы, занимающие только однотипные М., и эвритопные организмы, проявляющие способность занимать в пределах своего ареала разнообразные М. У мн. видов М. меняется в зависимости от стадии развития. Так, личинки земноводных обычно обитают в воде, взрослые животные - на суше. Многие паразиты имеют покоящуюся фазу, сохраняющуюся во внеш. среде, и активную фазу, обитающую в теле хозяина, часто лишь в определённых его органах; разные фазы развития многих паразитных растений связаны с различными растениями-хозяевами. Часть М. вида, занимаемая им на ограниченный период (сезон, период суток), для определённой цели (питание, размножение), наз. стацией. М. биоценоза наз. биотопом.

Лит.: Наумов Н. П., Экология животных, 2 изд., М., 1963; Основы лесной био-геоценологии, под ред. В. Н. Сукачёва и Н. В. Дылиса, М., 1964. Н. П. Наумов.

МЕСТОРОЖДЕНИЕ ПОЛЕЗНОГО ИСКОПАЕМОГО, скопление минерального вещества на поверхности или в недрах Земли в результате тех или иных геол. процессов, по количеству, качеству и условиям залегания пригодного для пром. использования. Месторождения могут заключать газовые (горючие газы углеводородного состава и негорючие газы - гелий, неон, аргон, криптон), жидкие (нефть и подземные воды) и твёрдые (ценные элементы, кристаллы, минералы, горные породы) полезные ископаемые. По пром. использованию М. п. и. разделяются на рудные (или металлические), нерудные (или неметаллические), горючие (или каустобиолиты) и гидроминеральные (см. Полезные ископаемые). Месторождения подземных вод (питьевые, технич., бальнеологич., или минеральные, а также нефтяные, содержащие бром, иод, бор, радий и др. элементы в количестве, достаточном для их извлечения) отличаются от месторождений др. полезных ископаемых возоб-новляемостью запасов. Минимальное количество полезного ископаемого и наиболее низкое его качество, при к-рых, однако, возможна эксплуатация, наз. пром. кондициями. М. п. и. могут выходить на поверхность Земли (открытые месторождения) или быть погребенными в недрах (закрытые, или "слепые", месторождения). По условиям образования месторождения подразделяются на серии (седимен-тогенные, магматогенные и метаморфо-генные месторождения), а серии, в свою очередь,- на группы, классы и подклассы.

Седиментогенные месторождения (поверхностные, экзогенные) М. п. и. формировались на поверхности и в приповерхностной зоне Земли вследствие хим., биохим. и механич. дифференциации минеральных веществ, обусловленной внешней энергией Земли. Среди них выделяются 3 группы М. п. и.: 1) выветривания (см. Месторождения выветривания), 2) россыпные (см. Россыпи), 3) осадочные (см. Осадочные месторождения).

Магматогенные (глубинные, эндогенные) М. п. и. формировались в недрах Земли при геохим. дифференциации минеральных веществ, обусловленной возникновением магмы и её воздействием на окружающую среду за счёт внутриземных источников энергии. Среди них выделяется 5 осн. групп: магматические месторождения, 2) пегматитовые М. п. и. (см. Пегматиты), 3) карбона-титовые М. п. и. (см. Карбонатиты), 4) скарновые М. п. и. (см. Скарны), 5) гидротермальные месторождения.

Метаморфогенные М. п. и. возникали в процессе регионального и локального метаморфизма горных пород (см. Метаморфогенные месторождения).

В соответствии с принятым подразделением геол. истории различают М. п. и. архейского, протерозойского, рифейского, палеозойского, мезозойского и кайнозойского возраста. По источникам вещества, слагающего М. п. и., среди них выделяются месторождения с веществом подкоровых мантийных, или базальтовых), коро-вых (или гранитных) магм, а также осадочной оболочки Земли. По месту формирования месторождения разделяются на геосинклинальные (складчатых областей) и платформенные. Известны 4 уровня образования,М. п. и. от поверхности Земли: ультраабиссальный - св. 10-15 км', абиссальный - от 3-5 до 10-15 км; гипабиссальный - от 1-1,5 до 3-5 км', приповерхностный - до глуб. 1-1,5 км.

Лит.: Смирнов В. И., Геология полез--ных ископаемых, 2 изд., М., 1969.

В. И. Смирнов.

МЕСТОРОЖДЕНИЯ ВЫВЕТРИВАНИЯ, залежи полезных ископаемых в зоне хим. выветривания горных пород у поверхности Земли. М. в. формировались в прежние геол. эпохи и образуются на совр. этапе при разложении глубинных горных пород, выведенных к поверхности Земли и оказавшихся неустойчивыми в новых для них термо-динамич. условиях. Под воздействием воды, кислорода, углекислоты, неорга-нич. и органич. кислот, а также скоплений простейших организмов горные породы разлагаются, преобразуясь из агрегатов сложных силикатов в более простые окислы и гидроокислы. Часть этих вновь образованных соединений растворяется и выносится грунтовыми водами, переотлагаясь на нек-рой глубине от поверхности Земли, формируя и н ф и л ь т-рационные М.в. (месторождения урана, меди, самородной серы). Труднорастворимая часть накапливается у поверхности Земли, образуя остаточные М.в. (месторождения никеля, железа, марганца, боксита, магнезита, каолина).

Лит.: Смирнов В. И., Геология полезных ископаемых, 2 изд., М., 1969.

В. И. Смирнов.

МЕСТР (Maistre) Жозеф Мари де (1.4. 1753, Шамбери, Савойя,- 26.2.1821, Турин), граф, французский публицист, политич. деятель и религ. философ. Воспитан иезуитами, в 1774 окончил Туринский ун-т, в 1774-88 советник при савойском сенате, с 1788 сенатор. В 1802-1817 посланник сардинского короля в Петербурге, где написаны его осн. сочинения: "Опыт о порождающем принципе человеческих учреждений" (1810), "О папе" (1819), "Петербургские вечера" (1821). В начале деятельности М. рассчитывал с помощью масонства способствовать установлению обновлённого ре-лиг, миропорядка. В дальнейшем, отшатнувшись от Великой франц. революции, предлагал крайне реакционные средства осуществления религ. утопии. В антирево-люц. трактате "Соображения о Франции" (1796) М. выступает против руссоистских идей обществ, договора и естеств. добродетели, а также рационализма вольтеровского типа. Политич. воззрения М. обусловлены его идеей о внесении в мир религ. упорядоченности: её пособниками и установителями он готов признать не только Бурбонов или Наполеона, но даже и рево-люц. правительство, поскольку оно отрешилось от анархии (отсюда скандально знаменитая апология палача как вершителя порядка). Идеально упорядоченным обществом М. считал ср.-век. Европу 12-13 вв., предлагая "реставрировать" конгломерат монархич. гос-в, спаянный непререкаемым духовным авторитетом папы. Как философ истории М.- сторонник религ. провиденциализма: божеств, провидению противится злое, своевольное начало, к-рое он предполагает укротить суровыми мерами. Вместе с Л. Бональдом М. явился вдохновителем и идеологом европ. клерикально-монархич. движения 1-й пол. 19 в. В 20 в. наиболее ревностным проводником идей М. был Ш. Моррас. Влияние публицистики М. обнаруживается в "Философических письмах" П. Я. Чаадаева и политич. трактатах Ф. И. Тютчева.

Соч.: CEuvres completes, v. 1 - 14, Lyon, 1884-86.

Лит.: История философии, т. 3, М., 1943, с. 379-85; Жозеф де Местр в России.-Письма, в кн.: Литературное наследство, т. 29-30, М., 1937; Р a u I h a n F., Joseph de Maistre et sa philosophic, P., 1893; G o-yau G., La pensee religieuse de Maistre, 2 ed., P., 1921; .Rob d en P. R., Joseph de Maistre als politischer Theoretiker, Munch., 1929; Dermenghem E., J. de Maistre mystique, P., 1946; Brunello В., J. de Maistre politico e filosofo, Bologna, 1967.

В. С. Муравьёв.

МЕСТР (Maistre) Ксавье де (8.11.1763, Шамбери, Савойя, - 12.6.1852, Петербург), граф, французский писатель, учёный, художник, воен. деятель. Брат Ж. де Местра. В 1800 эмигрировал в Россию, стал офицером рус. армии, участвовал в войнах на Кавказе и в Персии. Позже был директором и библиотекарем Музея Адмиралтейства в Петербурге; член академий наук в Турине (автор трудов по физике и химии в сборниках академии) и Савойе. Первое художественное произв. М. "Путешествие вокруг моей комнаты > (1794, рус. пер. 1802) отличалось непосредственностью и живостью повествования. Его новеллы на рус. темы были отмечены Ш. О. Сент-Бёвом во Франции, А. Ф. Вельтманом и В. И. Далем в России. Новелла "Молодая Сибирячка" (1815) вошла в круг детского чтения (рус. пер. 1840). Переводил басни И. А. Крылова на франц. яз. Был известен как миниатюрист (портрет Н. О. Пушкиной - матери поэта) и пейзажист.

Соч.: (Euvres completes. Nouv. ed., ргё-cedee d'une notice de M. Sainte-Beuve, P., 1894.

Лит.: Via материалов "Строгановской Академии". Неопубл. произв. К. де Местра и 3. Волконской, в кн.: Литературное наследство, т. 33-34, М., 1939; Sainte-Beuve Ch. Aug., Portraits contemporains, v. 3, P., 1870; В e r t h i e r A., X. de Maistre, Lyon, 1921. М. А. Голъдман.

МЕСТЬ КРОВНАЯ, см. Кровная месть.

МЕСХЕТИ, страна месхов (одного из груз, племён), историч. назв. части Юж. Грузии. Со 2-й пол. 13 в. М. входила в состав княжества Самцхе-Саатабаго. В 16 в. завоёвана Турцией. По Адрианопольскому миру 1829, сев. часть М. присоединена к России.

МЕСХЕТСКИЙ ХРЕБЕТ, А д ж а р о-Имеретинский, горный хребет М. Кавказа, в Груз. ССР. Протягивается от Аджарского побережья Чёрного м. до Боржомского ущелья р. Куры на 150 км. Вые. до 2850 м (г. Меписцка-ро). Сложен осадочными флишевыми и вулканогенными породами (туфы, андезиты). На гребне - горно-луговые ландшафты; на склонах - пышные широколиственные (бук, граб и др.) и хвойные леса.
МЕТАЛЛИЗАЦИЯ, покрытие поверхности изделия металлами и сплавами для сообщения физико-хим
МЕТАЛЛИЗАЦИЯ, покрытие поверхности изделия металлами и сплавами для сообщения физико-хим. и механич. свойств, отличных от свойств металлизируемого (исходного) материала. М. применяют для защиты изделий от коррозии, износа, эрозии, в декоративных и др. целях. По принципу взаимодейст-Зия металлизируемой поверхности (подложки) с наносимым металлом различают М., при к-рой сцепление покрытия с основой (подложкой) осуществляется механически-силами адгезии (см. табл., группа 1), и М., при к-рой сцепление обеспечивается силами металлич. связи (группа 2): с образованием диффузионной зоны на границе сопрягающихся поверхностей, за пределами к-рой покрытие состоит из наложенного слоя металла или сплава (подгруппа 2а), и с образованием диффузионной зоны в пределах всего слоя покрытия (подгруппа 26).

Технология М. по типам 1 и 2а предусматривает наложение слоя вещества на поверхность холодного или нагретого до относительно невысоких темп-р изделия. К этим видам М. относятся: электролитические (см. Гальванотехника), хим., газопламенные процессы получения покрытий (см. Напыление); нанесение покрытий плакированием, осаждением хим. соединений из газовой фазы, электрофорезом; вакуумная М.; М. взрывом, воздействием лучей лазера, плазмы, погружением в расплавленные металлы и др. способы. В этих процессах М. сопровождается изменением геометрии и размеров изделия соответственно толщине слоя наносимого металла или сплава. Технология М. по типу 26 предусматривает диффузионное насыщение металлич. элементами поверхности деталей, нагретых до высоких темп-р, в результате к-рого в зоне диффузии элемента образуется сплав (см. Диффузионная металлизация). В этом случае геометрия и размеры металлизируемой детали практически не меняются.

М. изделий по типу 1 производится в декоративных целях, для повышения твёрдости и износостойкости, для защиты от коррозии. Из-за слабого сцепления покрытия с подложкой этот вид М. нецелесообразно применять для деталей, работающих в условиях больших нагрузок и темп-р. М. деталей по типу 2 придаёт им высокую твёрдость и износостойкость, высокую коррозионную и эрозионную стойкость, жаростойкость, необходимые теплофизич. и электрич. свойства. М. по типу 26 применяется для деталей, претерпевающих действие значит, механич. напряжений (статич., динамич., знакопеременных) при низких и высоких температурах. Эти виды М., за нек-рым исключением, используются для нанесения защитного слоя на подложки из различных металлов, сплавов и неметаллич. материалов (пластмассы, стёкла, керамика, бумага, ткани и др.). М. находит применение в электротехнике, радиоэлектронике, оптике, ракетной технике, автомоб. пром-сти, судостроении, самолётостроении и др. областях техники.

В табл. приведены осн. технологич. процессы, с помощью к-рых осуществляется М. различными металлами. О видах М. см. в статьях Алитирование, Анодирование, Бериллизация, Бронзи-рование, Железнение, Золочение, Кадмирование, Латунирование, Меднение, Молибденирование, Никелирование, Палладирование, Платинирование, Родирование, Свинцевание, Серебрение, Тита-нирование, Хромирование, Цинкование.

Лит.: Высокотемпературные неорганические покрытия, [пер. с англ.], М., 1968; Ротрекл Б., Дитрих 3., Там хина И., Нанесение металлических покрытий на пластмассы, пер. с чеш., Л., 1968; Ройх И. Л., Колтунова Л. Н.,

Защитные вакуумные покрытия на стали, М., 1971; Катц Н. В., Металлизация тканей 2 изд., М., 1972. Г. Н. Дубинин.

МЕТАЛЛИЛХЛОРИД, 1 хлор 2 метил-пропен-2, химич. средство (жидкость) для газового обеззараживания зерна и зернопродуктов от вредителей; см. в ст. Фумшанты.

МЕТАЛЛИСТИЧЕСКАЯ ТЕОРИЯ ДЕНЕГ, см. в ст. Деньги, раздел Буржуазные теории денег.

МЕТАЛЛИЧЕСКАЯ СВЯЗЬ, тип связи атомов в кристаллических веществах, обладающих металлич. свойствами (металлах, металлидах). М. с. обусловлена большой концентрацией в таких кристаллах квазисвободных электронов (электронов проводимости). Отрицательно заряженный электронный газ "связывает" положительно заряженные ионы друг с другом (см. Химическая связь, Кристаллохимия).

МЕТАЛЛИЧЕСКИЕ ИЗДЕЛИЯ, то же, что метизы.

МЕТАЛЛИЧЕСКИЕ КОНСТРУКЦИИ, металлоконструкции, общее название конструкций, выполненных из металлов и применяемых в стр-ве. Совр. М. к. подразделяются на стальные (см. Стальные конструкции) и из лёгких сплавов (напр., алюминиевых сплавов). До нач. 20 в. в стр-ве применялись в основном металлич. строит, конструкции из чугуна (гл. обр. в колоннах, балках, лестницах и т. д. Из металла изготовлен, напр., купол Исаакиевского собора в Ленинграде диаметром 22 м). В совр. стр-ве получили распространение стальные конструкции, используемые в несущих каркасах пром. сооружений, жилых и обществ, зданий, в пролётных строениях мостов, каркасах доменных печей, газгольдерах, резервуарах, мачтах, опорах линий электропередачи и др. Конструкции из алюминиевых сплавов, обладающие рядом достоинств (лёгкость, коррозионная стойкость, технологичность, высокие декоративные свойства), наиболее широко применяются в качестве ограждающих элементов и в виде отделочных деталей зданий. М. к. изготовляются преим. из профилированного и листового метал-ла. По характеру соединения элементов между собой различают М. к. сварные, клёпаные и с болтовыми соединениями. В машиностроении обычно под М. к. подразумеваются детали, изготовленные из профилированного металла, в отличие от литых деталей и поковок. См. также Листовые конструкции, Клёпаные конструкции, Сварные конструкции.

Л. В. Касабъян.

МЕТАЛЛИЧЕСКИЕ СОЕДИНЕНИЯ, интерметаллические соединения, то же, что металлиды.

МЕТАЛЛИЧЕСКИЙ МОСТ, мост, пролётные строения к-рого выполнены из металла, преим. стали (опоры в совр. М. м. обычно бетонные или железобетонные); см. Стальной мост, Мост.

МЕТАЛЛОВЕДЕНИЕ, наука, изучающая связи состава, строения и свойств металлов и сплавов, а также закономерности их изменения при тепловых, меха-нич., физико-хим. и др. видах воздействия. М.- науч. основа изысканий состава, способов изготовления и обработки металлич. материалов с разнообразными механич., физ. и хим. свойствами. Уже народам древнего мира было известно получение металлич. сплавов (бронзы и др.), а также повышение твёрдости и прочности стали посредством закалки. Как самостоят, наука М. возникло и оформилось в 19 в., вначале под назв. металлографии. Термин "М." введён в 20-х гг. 20 в. в Германии, причём было предложено сохранить термин "металлография" только для учения о макро- и микроструктуре металлов и сплавов. Во мн. странах М. по-прежнему обозначают термином "металлография", а также наз. "физической металлургией". Возникновение М. как науки было обусловлено потребностями техники. В 1831 П. П. Аносов, разрабатывая способ получения булата, изучал под микроскопом строение отполированной поверхности стали, предварительно протравленной кислотой. В 1864 Г. К. Сорби произвёл подобные же исследования микроструктуры жел. метеоритов и образцов стали, применив при этом микрофотографию. В 1868 Д. К. Чернов указал на существование температур, при к-рых сталь претерпевает превращения при нагревании и охлаждении (критические точки). Эти темп-ры измерил Ф. Осмонд (1888) при помощи термоэлектрич. термометра, изобретённого А. Ле Шателъе. У. Робертс-Остен (Великобритания,) исследовал методами термического анализа и микроструктуры неск. двойных металлич. систем, в т. ч. железоуглеродистые сплавы (1897). Его результаты критически пересмотрел в 1900 с точки зрения фаз правила, теоретически выведенного Дж. У. Гиббсом (1873-76), Г. В. Розе-бом. Ле Шателье значительно улучшил технику изучения микроструктуры. Н. С. Курнаков сконструировал самопишущий пирометр (1903) и на основе изучения ряда металлич. двойных систем совм. с сотрудниками (С. Ф. Жемчужным, Н. И. Степановым, Г. Г. Уразовым и ДР-) установил закономерности, явившиеся основой учения о сингулярных течках и физико-химического анализа. С 1903 диаграммы состояния металлич. сплавов изучал Г. Тамман с сотр. В России А. А. Банков исследовал явления закалки сплавов (1902), значительно улучшил методику М. введением авто-матич. записи дифференциальных кривых нагревания и охлаждения (1910) и травления микрошлифов при высокой темп-ре (1909). Байков основал в Петерб. политехнич. ин-те первую в России уч. лабораторию М., в к - рой работали Н. Т. Гудцов, Г. А. Кащенко, М. П. Славинский, В. Н. Свечников и др. Пионерами применения М. в заводской практике были А. А. Ржешотарский, создавший лабораторию М. на Обуховском з-де (1895), и Н. И. Беляев, основавший такую же лабораторию на Путиловском з-де (1904). В 1908 А. М. Бочвар организовал в Высшем технич. уч-ще первую в Москве металлографич. лабораторию, в к-рой работали И. И. Сидорин, А. А. Бочвар, С. М. Воронов и др. специалисты в области М. цветных металлов.

В 1918 А. Портевен и М. Гарвен (Франция) установили зависимость критич. точек стали от скорости охлаждения. С 1929-30 начались исследования превращений в стали в изотермич. условиях (Э. Давенпорт и Э. Бейн, Р. Мейл в США, С. С. Штейнберг, Н. А. Минке-вич в СССР, Ф. Вефер в Германии и др.). Одновременно развивалась физ. теория кристаллизации металлов, экспериментальные основы к-рой были заложены в нач. 20 в. Тамманом (Я. И. Френкель, В. И. Данилов в СССР, М. Фоль-мер в Германии, И. Странский в Болгарии).

Исключит, роль в развитии М. играл начиная с 20-х гг. 20 в. рентгенострук-турный анализ, к-рый позволил определить кристаллич. структуру различных фаз, описать её изменения при фазовых переходах, термической обработке и деформации (структуру мартенсита, изменения структуры твёрдых растворов при их распаде и т. д.). В этой области важнейшее значение имели работы Г. В. Курдюмова, С. Т. Конобеевского, Н. В. Агеева и др., а за рубежом -А. Вестгрена (Швеция), У. Юм-Розери (Великобритания), У. Делингера, В. Кестера (Германия) и др. Курдюмов, в частности, разработал теорию закалки и отпуска стали и исследовал осн. типы фазовых" превращений в твёрдом состоянии ("нормальные" и мартенситные). В 20-х гг. А. Ф. Иоффе и Н. Н. Давиденков положили начало теории прочности кристаллов. Теория фазовых превращений, изучение атомно-кристаллич. и электронного строения металлов и сплавов, природы механич., тепловых, электрич. и магнитных свойств металлов были новыми этапами в истории М. как пограничной науки между физ. химией и физикой твёрдого тела (см. Металлофизика).

Развитие М. во 2-й пол. 20 в. характеризуется значит, расширением методич. возможностей. Кроме рентгеноструктурного анализа, для изучения атомнокристаллического строения металлов применяют электронную микроскопию, к-рая позволяет изучать локальные изменения строения сплавов, взаимное расположение структурных составляющих и несовершенства кристаллич. строения (см. Дефекты в кристаллах). Существ, значение имеют методы электронной дифракции, нейтронографии, радиоизотопных индикаторов, внутреннего трения, микрорентгеноспектрального анализа, калориметрии, магнитометрии и др.

М. условно разделяется на теоретическое, рассматривающее общие закономерности строения и процессов, происходящих в металлах и сплавах при различных воздействиях, и прикладное (техническое), изучающее основы технологич. процессов обработки (термич. обработка, литьё, обработка давлением) и конкретные классы металлич. материалов.

Осн. разделы теоретич. М.: теория металлич. состояния и физ. свойств металлов и сплавов, кристаллизация, фазовые равновесия в металлах и сплавах, диффузия в металлах и сплавах, фазовые превращения в твёрдом состоянии, физ. теория процессов пластической деформации, упрочнения, разрушения и рекристаллизации. Содержание теоретич. М. в значит, мере связано с металлофизикой.

Теория металлич. состояния рассматривает металл как совокупность электронов, движущихся в периодич. поле положительных ионов (см. Металлы). На основе учёта сил межатомного взаимодействия оценена теоретич. прочность металлич. монокристаллов, к-рая в 100-1000 раз больше практической. Электрич. сопротивление металлов рассматривается как следствие нарушений идеального расположения атомов в кристаллич. решётке, обусловленных её колебаниями, наличием статич. дефектов и примесей. В зависимости от особенностей межатомного взаимодействия возникают различные фазы: упорядоченные твёрдые растворы, электронные соединения, фазы внедрения, сигма-фазы и т. д. Развитие электронной теории металлов и сплавов сыграло большую роль в создании сплавов с особыми физ. свойствами (сверхпроводящих, магнитных и др.).

Кристаллизация металлов характеризуется большими значениями скорости зарождения центров кристаллизации и скорости роста кристаллов при малом интервале переохлаждений, в к-ром происходит затвердевание. Строение реального металлич. слитка определяется закономерностями кристаллизации, условиями теплоотвода, а также влиянием примесей. Механизм эвтектич. кристаллизации сплавов был изучен А. А. Боч-варом (1935).

Один из важнейших разделов теоретич. М. - изучение фазовых равновесий в сплавах. Построены диаграммы состояния для мн. двойных, тройных и более сложных систем и установлены темп-ры фазовых переходов. При определённых условиях (напр., быстром охлаждении) могут возникать метастабильные состояния с относительным, при данных термо-динамич. условиях, минимумом свободной энергии. Наиболее важные примеры таких состояний - мартенсит стали и пересыщенные твёрдые растворы металлов (напр., А1 - Си). Кинетика фазовых превращений и условия возникновения метастабильных состояний определяются степенью отклонения системы от равновесия, подвижностью атомов (характеристики диффузии), структурным и хим. соответствием возникающих и исходных фаз.

Превращения в твёрдом состоянии (фазовые превращения) в условиях сильного межатомного взаимодействия в кристаллич. фазах сопровождаются возникновением полей напряжений. При нек-рых условиях и наличии полиморфных модификаций (см. Полиморфизм) наблюдается упорядоченная перестройка кристаллич. решётки на границе фаз (мартенситное превращение). В области темп-р, при к-рых быстро происходят релаксационные процессы, образование кристаллов новой фазы может протекать путём неупорядоченных диффузионных переходов отд. атомов ("нормальное" превращение). Для М. железных сплавов большое значение имеют кинетич. диаграммы превращений аустенита. В металлич. сплавах часто протекают процессы распада пересыщенных твёрдых растворов. Во мн. случаях наиболее существ, изменения свойств происходят до возникновения при распаде второй фазы. Рентгенографические исследования показали, что эти изменения связаны с процессами перераспределения атомов в решётке матрицы, образов