БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

МЕЩАНСКАЯ ДРАМА, жанр драма-тич. произведений.
МЛАДОАФГАНЦЫ, участники нац. патриотич. движения.
МОРАЛЬ (лат. moralis - нравственный, от mos, мн. ч. mores - обычаи, нравы, поведение).
МУДАНЬЦЗЯН, город на С.-В. Китая, в пров. Хэйлунцзян.
НАМПХО, город на С.-З. КНДР, в пров. Пхёнан-Намдо.
КРАСНАЯ ГОРБАТОВСКАЯ ПОРОДА крупного рогатого скота.
НИЖНИЕ ПЛАНЕТЫ, две большие планеты Солнечной системы - Меркурий и Венера.
ОБМЕН ТЕЛЕГРАФНЫЙ, суммарное количество телеграмм.
ОРЕНБУРГ (с 1938 по 1957 - Ч к а л о в), город, центр Оренбургской области РСФСР.
ПАНАМЕРИКАНСКИЙ COЮЗ, создан в 1889 на 1-й Панамериканской конференции.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

240186832560058839381анием обогащённых зон внутри матрицы (см. Старение металлов). Равновесия и кинетика фазовых превращений могут в значит, мере изменяться в результате воздействия высоких давлений. В связи а проявлением сил хим. взаимодействия между атомами различных элементов в ненасыщенных твёрдых растворах могут также происходить процессы перераспределения атомов элементов. Упорядоченное расположение атомов в определённых узлах кристаллич. решётки возникает в твёрдых растворах замещения (напр., Сu - Аl) и внедрения (мартенсит, Та - О и т. д.). В нек-рых случаях появляются внутрифазовые неоднородности - сегрегации.

Важное значение для развития М. имеет физическая теория пластической деформации и дефектов кристаллич. строения. Расхождение между теоретически вычисленными и наблюдаемыми на опыте значениями прочности привело в 1933-34 к предположению о наличии в кристаллах особых дефектов (несовершенств) - дислокаций, перемещение к-рых под действием сравнительно малых сил осуществляет пластич. деформацию. Экспериментальные исследования, проведённые различными методами и особенно дифракционной электронной микроскопией тонких фольг, подтвердили наличие дислокаций. Методы внутр. трения и др. позволили выяснить роль точечных дефектов (вакансий). Наличие вакансий влияет на физ. свойства кристаллов и играет важную роль в диффуз. процессах при термообработке, отдыхе металлов, рекристаллизации металлов, спекании и т. д. Изучение свойств бездефектных нитевидных кристаллов доказало правильность теоретич. оценки прочности. В практически важных случаях повышение прочности достигается увеличением плотности дислокаций (напр., пластической деформацией, мартенсит-ным превращением при закалке или их сочетанием). Примеси могут скапливаться у дислокаций и блокировать их. Одно из наиболее ярких проявлений влияния реальной структуры на процессы в металлах и сплавах - различия в скорости диффузии и распределении элементов по границам и объёму поликристаллов. В нек-рых случаях очень малые примеси изменяют скорость граничной диффузии. Поскольку мн. процессы распада твёрдых растворов начинаются преим. в приграничных областях, малые примеси могут существенно изменять кинетику этих процессов и конечную структуру. Взаимодействие дислокаций с примесями внедрения (в железе -углерод и азот) - одна из гл. причин хладноломкости металлов с объёмноцен-трированной кубич. решёткой. Движением и взаимодействием дислокаций определяется протекание упрочнения металлов, разупрочнения, ползучести, полигонизации, рекристаллизации и др. процессов. Наиболее эффективные средства изменения структуры и свойств металлич. материалов- легирование, термическая обработка, поверхностное упрочнение, химико-термическая обработка, термомеханическая обработка.

Содержанием прикладного (технического) М. является изучение состава, структуры, процессов обработки и свойств различных конкретных классов металлич. материалов (напр., железоуглеродистых сплавов, конструкционной стали, нержавеющей стали, жаропрочных сплавов, алюминиевых сплавов, магниевых сплавов, металлокерамики). В связи с развитием новых областей техники возникли задачи изучения поведения металлов и сплавов при радиационных воздействиях, весьма низких темп-pax, высоких давлениях и т. д.

Лит.: Б у н и н К. П., Железоуглеродистые сплавы, К. - М., 1949; физические основы металловедения, М., 1955; Б о ч в а р А. А., Металловедение, 5 изд., М., 1956; К у р дю м о в Г. В., Явления закалки и отпуска стали, М., I960; Лившиц Б. Г., Металлография, М., 1963; Физическое металловедение, пер. с англ., в. 1 - 3, М., 1967-68.

Р. И. Энтин.

"МЕТАЛЛОВЕДЕНИЕ И ТЕРМИЧЕСКАЯ ОБРАБОТКА МЕТАЛЛОВ", ежемесячный науч.-технич. и производств, журнал, орган Мин-ва станко-строит. и инструментальной пром-сти СССР и Центр, правления Науч.-технич. об-ва маш.-строит, пром-сти. Выходит в Москве с 1955. Публикует материалы о свойствах металлов и сплавов, освещает вопросы теории и технологии тер-мич. обработки, помещает статьи о достижениях зарубежной техники в этой области, техническую информацию, хронику, персоналии. Тираж (1973) 10 тыс. экз. Переиздаётся на английском языке в США.

МЕТАЛЛОГЕНИЧЕСКИЕ КАРТЫ, геол. карты, показывающие закономерности размещения рудных месторождений в связи с особенностями геол. строения местности.

По масштабу М. к. разделяются на три группы: обзорные, или мелкомасштабные (от 1 : 500 000 и мельче); среднемасштаб-ные (1 : 200 000 - 1 : 100 000); крупномасштабные (1 : 50 000 - 1 : 25 000). Геол. основой обзорных М. к. является карта формаций осадочных, магматических и метаморфич. пород, последовательно возникающих в процессе преобразования геосинклиналей в складчатые области и платформы. На среднемасштабных картах, кроме того, отображаются крупные складчатые и разрывные текто-нич. структуры. При составлении крупномасштабных М. к. изображаются возраст пород, их состав и все существенные тектонич. структуры.

Месторождения полезных ископаемых показываются внемасштабными условными знаками, отображающими их гене-тич. класс, минеральный и химич. состав, размеры запасов минерального сырья и его качество. Совокупность сходных месторождений оконтуривается с выделением на М. к. площадей их распространения, определяемых к.-л. элементом геологического строения местности или их комбинацией. При этом выделяются металлогенические области, районы и зоны, подчинённые породам определённого возраста, состава или строения.

Лит.: Смирнов В. И., Очерки металологении, М., 1963; Основные принципы составления, содержание и условные обозначения металлогенических и прогнозных карт рудных районов, М., 1964. В. И. Смирнов.

МЕТАЛЛОГЕНИЧЕСКИЕ ЭПОХИ, эпохи формирования рудных месторождений, отвечающие основным этапам геоло-гич. развития земной коры. Архейская М. э. выделялась по глубоко метаморфизованным месторождениям железистых кварцитов и сравнительно ограниченным по распространению керамическим пегматитам. Раннепротерозойская М. э. отличалась широким распространением метаморфогенных жел. руд (джеспилиты, итабириты), урансодержащих золотоносных конгломератов, медистых песчаников, магматических месторождений хрома, титана, меди, никеля. Среднепротеро-зойской М. э. также были свойственны метаморфогенньге месторождения железа и металлоносных конгломератов; кроме того, в это время формировались древнейшие колчеданные медные, свинцово-цинковые и гидротермальные урановые месторождения. Раннерифейская М. э. характеризовалась формированием мета-морфогенных месторождений железа, марганца, а также магматич. месторождений сульфидных медно-никелевых руд и редкометальных пегматитов. Поздне-рифейская М. э. отличалась массовым развитием месторождений медистых песчаников, проявлением гидротермальных месторождений золота, меди, олова и вольфрама. Каледонская М. э. характеризовалась преобладанием месторождений, связанных с базальтоидной магмой и представленных магматич. месторождениями железа, титана, хрома, платиноидов; известны также гидротермальные месторождения золота. Герцинская М. э. отличалась разнообразными полезными ископаемыми; среди них - магматические месторождения железа, титана, хрома, платиноидов; скарновые месторождения железа и меди; колчеданные месторождения меди, свинца и цинка; пегматитовые и грейзеновые месторождения вольфрама, олова, лития, бериллия; гидротермальные месторождения меди, свинца, цинка, молибдена, золота, урана. Альпийская М. э. выделялась по развитию разнообразных плутоногенных и вулканогенных гидротермальных месторождений меди, цинка, свинца, золота, вольфрама, олова, молибдена и особенно сурьмы и ртути.

Лит.: Смирнов В. И., Очерки металлогении, М., 1963; ТвалчрелидзеГ.А., О главнейших металлогенических эпохах Земли, "Геология рудных месторождений", 1970, т. 12, № 1.

В. И. Смирнов.

МЕТАЛЛОГЕНИЯ (от металлы и греч. -geneia - часть сложного слова, означающая происхождение, создание), раздел учения о полезных ископаемых, исследующий региональные закономерности формирования и размещения рудных месторождений. Служит науч. основой прогноза распространения различных групп рудных месторождений. Основоположники М.: в СССР - В. А. Обручев, С. С. Смирнов, Ю. А. Билибин', за рубежом - франц. геолог Л. де Лоне. М. исходит из того, что на последовательных этапах истории развития земной коры в её крупных структурных подразделениях со свойственными им процессами осадконакопления, тектоники и магматизма, возникают строго определённые группы рудных месторождений. Этот процесс протекает по-разному в геосинклиналях и на платформах.

Преобразование геосинклиналей в складчатые области сопровождается возникновением трёх серий магматич. пород и связанных с ними рудных месторождений. На ранней стадии (прогибание ложа геосинклинали и накопление мощной толщи базальтоидных вулканогенно-оса-дочных пород) образуются 4 формации магматич. пород: спилито-кератофировая с колчеданными месторождениями меди, цинка, иногда свинца; перидотитовая с магматич. месторождениями хромитов; габбро-пироксенит-дунитовая с магматич. месторождениями титано-магнетитовых руд; плагиогранит-плагиосиенитовая со скарновыми месторождениями железа и меди. В среднюю стадию геосинклинального развития, в период главных фаз складчатости, образуются 2 формации гранитоидных магматич. пород: гранодио-ритовая со скарновыми и гидротермальными месторождениями вольфрама (шеелита), золота, меди, молибдена, свинца и цинка; гранитная с пегматитовыми, аль-бититовыми и грейзеновыми месторождениями олова, вольфрама (вольфрамита), тантала, лития, бериллия. В позднюю стадию, переходную от геосинклинального к платформенному режиму, происходит внедрение 2 формаций магматич. пород: малых гипабиссальных интрузий состава от диорит-порфиров до гранит-порфиров и сиенит-порфиров с разнообразными плутоногенными гидротермальными месторождениями руд цветных, редких, благородных и радиоактивных металлов; андезито-дацитов со столь же разнообразными вулканогенными гидротермальными рудными месторождениями.

Приведённая схема М. геосинклиналей - обобщённая и обычно в полном виде не проявляется. В конкретных складчатых областях, возникших на месте геосинклиналей, либо развиваются рудные месторождения ранней и средней стадии геосинклинального развития, либо преобладают месторождения средней и поздней стадий. В соответствии с этим выделяются два профиля геосинклинальной М. (см. Геосинклиналь). В базаль-тоидном профиле, свойственном эвгео-синклиналям, преобладают рудные месторождения двух первых стадий (напр., на Урале). В гранитоидном профиле, характерном для миогеосинклиналей, развиты месторождения двух последних стадий (напр., в Верхоянье).

Формации магматич. пород и связанных с ними рудных месторождений закономерно размещаются в пределах геосинклиналей, создавая упорядоченную металлогенич. зональность складчатых областей. В эвгеосинклиналях располагаются спилито-кератофировая и плагиогранит-плагиосиенитовая формации ранней стадии со свойственными им месторождениями преим. жел. и медных руд. Эвгеосинклинальные троги отличаются сокращённым разрезом земной коры с отсутствием гранитного слоя, следствием чего является исключительно базальто-идный характер их М. Во внутр. зонах миогеосинклиналей и формирующихся на их месте срединных поднятий возникают цепи массивов гранитной формации средней стадии, с к-рыми связаны пояса пегматитовых, альбититовых и грейзено-вых мевторождений редких элементов. Внутр. зоны миогеосинклиналей характеризуются полным разрезом земной коры с хорошо развитым гранитным слоем; для них естественна гранитоидная М. Межтроговые зоны эвгеосинклиналей и периферия, зоны миогеосинклиналей являются областями распространения гра-нодиоритовой формации средней стадии
и связанных с нею рудных месторождений. Глубинные разломы, разграничивающие крупные структурно-формационные зоны геосинклиналей, контролируют внедрение, с одной стороны, перидотитов и габбро-пироксенитов ранней стадии, определяя позицию поясов магматич. месторождений хромитов ц титано-магнетитов, а с другой - определяют положение гипабиссальных плутонич. и вулканич. формаций магматич. пород поздней стадии, намечающих положение поясов, связанных с ними плутоногенных и вулканогенных гидротермальных месторождений цветных, редких, благородных и радиоактивных металлов.

М. платформ определяется тремя стадиями формирования их внутренних геологических структур: образованием складчатого основания, созданием осадочного чехла и тектоно-магматической активизацией.

В стадию формирования складчатого основания возникают месторождения складчатых зон, отвечающие особенностям М. геосинклиналей. Во время образования осадочного чехла платформ формируются пластовые осадочные месторождения рудных, нерудных и горючих полезных ископаемых. Полнота развития и особенности состава месторождений, формирующихся на стадии тек-тономагматической активизации платформ, зависят от интенсивности активизации.

На слабоактивизированных платформах нет заметных текто-нич. деформаций и магматич. пород, связанных с данной стадией развития платформ. Однако могут присутствовать т. н. телетермальные или стратиформные месторождения медных, свинцовых, цинковых, флюоритовых и баритовых руд, к-рые нек-рыми исследователями рассматриваются в качестве производных, внедрившихся на глубине магматич. пород. Их примером могут служить стратиформные месторождения свинцово-щш-ковых руд палеозойского чехла Сев.-Амер. платформы.

Активизированные платформы характеризуются образованием пологих складчатых деформаций, редких разломов и внедрением своеобразных магматических пород в платформенный период геологической истории. Так, Сибирская платформа в конце палеозоя - начале мезозоя была изогнута в широкие пологие складки, образовавшие поднятия и депрессии, разделённые разломами. К депрессиям приурочена формация траппов с сопровождающими её магматич. месторождениями сульфидных медно-никелевых руд, к поднятиям -интрузивы щелочных пород, сопровождаемые золотым оруденением; вдоль разломов внедрились алмазоносные кимберлиты и ультраосновные щелочные породы, сопровождаемые карбонатитовыми месторождениями апатита и редких элементов.

Интенсивно активизированным платформам свойственны внедрения гипабиссальных гранитных пород и гидротермальные месторождения золота, олова, молибдена, цинка, свинца и др. металлов.

Повторяемость сходных процессов формирования рудных месторождений в геол. истории Земли позволила выделить ряд последовательных металлогенич. эпох, а образование аналогичных групп рудных месторождений в сходных геол. условиях - металлогенич. провинций геосинклинального и платформенного типов. См. Металлогенические эпохи.

Лит.: Билибин Ю. А., Металлогенические провинции и Металлогенические эпохи, М., 1955; Магакьян И. Г., Основы металлогении материков, Ер., 1959; Смирнов В. И., Очерки металлогении, М-, 1963; Смирнов С. С., Очерки металлогении Восточного Забайкалья, М.-Л., 1944; Щеглов А. Д., Металлогения областей автономной активизации, Л., 1968.

В. И. Смирнов.

МЕТАЛЛОГРАФИЯ (от металлы и ...гра-фия), наука о структуре металлов и сплавов; составная часть металловедения. М. изучает закономерности образования структуры, исследуя макроструктуру и микроструктуру металла (путём ааблюдения невооруж. глазом либо с помощью светового и электронного микроскопов), а также изменения механич., электрич., магнитных, тепловых и др. физ. свойств металла в зависимости от изменения его структуры. Для изучения микроструктуры используют, кроме того, рентгеновскую дифракционную микроскопию (см. Рентгеновский структурный анализ). Исследование структуры необходимо для нахождения связи "структура - свойство", а установление закономерностей образования структуры - для прогнозирования на основе этой связи свойств новых сплавов. Напр., прочность однофазных сплавов связана с размером зерна; при наличии включений второй фазы расстояние между включениями влияет на прочность и темп-ру рекристаллизации сплава; от размера и количества включений второй фазы зависят магнитные свойства ферромагнитных материалов.

Макроструктура характеризуется формой и расположением крупных кристаллитов (зёрен), наличием и расположением различных дефектов металлов, распределением примесей (см. Ликвация) и неметаллич. включений. Микроструктура металлич. материала определяется формой, размерами, относит, количеством и взаимным расположением кристаллов отдельных фаз или их совокупностей, имеющих однообразный вид. Под тонкой структурой (субструктурой) понимают строение отдельных зёрен, определяемое расположением дислокаций и др. дефектов кристаллической решётки.

Формирование и изменение внутреннего строения металла (структуры) происходит в результате фазовых превращений при нагреве или охлаждении металла, а также вследствие пластич. деформации, облучения, отдыха, рекристаллизации, спекания и т. д. Структура литого металла, формирующаяся в результате возникновения и роста в расплаве центров кристаллизации, зависит от скорости охлаждения расплава, содержания примесей, направления отвода тепла (рис. 1) и др. факторов.

Рис. 1. Макроструктура литого сплава на основе железа. Зёрна вытянуты в направлении отвода тепла при затвердевании. Увеличено в 1,5 раза.

Рис. 2. Микроструктура алюминия после рекристаллизации, наблюдаемая, с помощью светового микроскопа в поляризованном свете. Увеличено в 70 раз.

Рис. 3. Микроструктура сплава железа с хромом и никелем, наблюдаемая с помощью электронного микроскопа. Крупные тёмные выделения образовались при высокой темп-ре. Мелкие выделения, возникшие при низкой температуре, не видны, но обнаруживаются благодаря вызванным ими искажениям решётки (область искажений имеет вид кофейного зерна). Увеличено в 82 500 раз.

Рис. 4. Микроструктура сплава на основе молибдена, наблюдаемая с помощью электронного микроскопа; а - слабо деформированный сплав (видны дислокации в виде тёмных прерывистых линий). Увеличено в 50 000 раз; б - сильно деформированный сплав (видны фрагменты, разделённые плотными скоплениями дислокаций). Увеличено в 52 500 раз.

Увеличение скорости охлаждения может, напр., приводить к измельчению зерна. Размер зерна можно изменить, подвергнув металл пластич. деформации и рекристаллизации (рис. 2). Микроструктура резко изменяется при протекании в твёрдом металле фазовых превращений, к-рые могут быть вызваны изменением темп-ры или всестороннего давления. И в этом случае структура зависи/ от условий, в которых проходит превращение, гл. обр. от температурного интервала и скорости охлаждения, а также от особенностей строения кристаллич. решёток фаз, участвующих в превращении. Напр., размеры выделений второй фазы и расстояние между ними уменьшаются, если превращение проходит при низких темп-pax или ускоренном охлаждении (рис. 3). Субструктура металла изменяется при фазовых превращениях, а также при пластич. деформации и рекристаллизации. Напр., после сильной деформации дислокации могут образовать скопления, разделяющие зёрна на отдельные фрагменты (рис. 4). Помимо закономерностей образования структуры, М. изучает условия и причины возникновения при кристаллизации, пластич. деформации и рекристаллизации текстуры металлов, к-рая обусловливает анизотропию свойств поликри-сталлич. материала. (Историч. справку см. в ст. Металловедение.)

Лит.: Б о ч в а р А. А., Металловедение, 5 изд., М., 1956; Ю м - Р о з е р и В., Рей-нор Г. В., Структура металлов и сплавов, пер. с англ., М., 1959; Лаборатория металлографии, 2 изд., М., 1965; С мол мен Р., А ш о и К., Современная металлография, пер. с англ., М., 1970; Лившиц Б. Г., Металлография, 2 изд., М., 1971.

В. Ю. Новиков.

МЕТАЛЛОИДЫ (от металлы и греч. eidos - вид, облик, образ), 1) устаревшее название неметаллич. элементов, см. Неметаллы. 2) Иногда применяемое (в зарубежной и переводной лит-ре) общее название элементов В, Si, Ge, As, Sb, Те, Ро, к-рые по свойствам занимают промежуточное положение между металлами и неметаллами.

МЕТАЛЛОКЕРАМИЧЕСКИЕ ЛАМПЫ, электронные лампы (триоды и тетроды), вакуумплотная оболочка к-рых выполнена из металла и керамики. Применяются в радиотехнич. устройствах для генерирования и усиления колебаний как в непрерывном, так и в импульсном режимах работы в дециметровом и сантиметровом диапазонах волн. М. л. разработаны в кон. 30-х гг. 20 в. в Германии (фирма "Телефункен"). Оболочки М. л. изготавливают из форстеритовой керамики (2MgO- SiO2) и титана, к-рые имеют одинаковые коэфф. теплового расширения, или из алюмооксидной керамики (А12О3) и металла (обычно медь, медно-никелевый сплав, ковар, титан). Электроды в М. л. (рис. 1) соединены металлич. дисками с металлич. цилиндрами, к к-рым подсоединяется съёмная часть колебат. системы из отрезков коаксиальных линий. Применение керамики вместо стекла повысило точность установки и жёсткость крепления электродов, что позволило сократить расстояния между электродами, напр, до 15-20 мкм между катодом и управляющей сеткой, и, как следствие, уменьшить время пролёта электронов между электродами, увеличить предельное значение рабочей частоты. Большая термостойкость керамики и меньшие её диэлектрич. потери на СВЧ по сравнению со стеклом, а также хороший отвод тепла от электродов через металлич. диски, спаянные с керамикой, способствовали повышению мощности (рис. 2) и кпд М. л. Благодаря этим преимуществам металлокерамич. оболочки с 50-60-х гг. применяются также и в др. электровакуумных приборах, напр, клистронах, магнетронах, тиратронах.

Рис. 1. Металлокерамический триод типа ГС-4В: / - катод; 2 - управляющая сетка; 3 - анод; 4 - вывод анода; 5 - вывод управляющей сетки; 6- вывод катода; 7 - вывод подогревателя катода. Габариты: высота 31 мм, диаметр 23 мм.

Анодное напряжение 220 в, выходная мощность около 1 втп на частоте 4,2 Ггц.

Рис. 2. Зависимость предельных зна< чений выходной мощности металлокера-мических ламп от частоты в непрерывном режиме работы.

Лит.: Антипов Г. Я., Марта-ков Г. М., Генераторные металло-керамические лампы СВЧ диапазона, М., 1969. В. Ф. Коваленко.

МЕТАЛЛОМЕТРИЧЕСКАЯ СЪЁМКА, то же, что литохимическая съёмка.
1612.htm
МЕТАЛОГИКА (от мета...), часть ло гики, посвящённая изучению метатеоре тическими средствами (см. Метатеория) строения и свойств различных логических теорий. Возникшая на рубеже 19 и 20 вв. в связи с исследованиями оснований дедуктивных наук (прежде всего математики), М. в ходе дальнейшей специализации этих исследований разделилась на синтаксическую и семантическую «ветви». К первой из них, посвящённой рассмотрению чисто структурных свойств исчислений, относятся прежде всего теория (формальных) доказательств (или метаматематика) и теория определимости понятий. Вторая «ветвь» М., распадающаяся на теорию смысла и теорию референции (теорию значения),— это логическая семантика, уже из основополагающей для неё работы А. Тарского, посвящённой исследованию понятия истины (истинности) в формализованных языках, выделилась вскоре самостоят, теория алгебраич. содержания — т. н. моделей теория. К М. относится и интересная проблема соотношения между экстенсиональными и интенсиональными языками, явившаяся отправным пунктом новой дисциплины— прагматики (см. Семиотика).

Лит.: Тарский А., Введение в логику и методологию дедуктивных наук, пер. с англ., М., 1948; К а р н а п Р., Значение и необходимость, пер. с англ., М., 1959; Ч ё р ч А., Введение в математическую логику, пер. с англ., т. 1, М., 1960 (введение); С а r n а р R., The logical syntax of language, N. Y.- L., 1937; Т а г s k i A., Logic, semantics, metamathematics, Oxf., 1956; Martin R., Towards to systematic pragmatics, Amst., 1959. Ю. А. Гостев, В. К. Финн.

МЕТАЛЬДЕГИД, полимеризованный ацетальдегид, средство для борьбы с голыми слизнями; см. Лимациды.

МЕТАМАГНЕТИК, вещество, обладающее в слабых магнитных полях свойствами антиферромагнетиков, а в полях напряжённостью выше 5-10 кэ - свойствами ферромагнетиков. Типичными М. являются слоистые соединения типа РеСЬ, в к-рых слои ионов железа, обладающих магнитным моментом, отделены друг от друга двумя слоями немагнитных ионов хлора. Слои магнитных ионов представляют собой двумерные ферромагнетики, внутри этих слоев между ионами имеется сильное ферромагнитное обменное взаимодействие (см. Ферромагнетизм). Между собой соседние слои магнитных ионов связаны антифер-ромагнитно (см. Антиферромагнетизм). В результате в системе магнитных моментов устанавливается упорядоченное состояние в виде слоистой магнитной структуры из чередующихся по направлению намагниченности ферромагнитных слоев. Нейтронографич. исследования (см. Нейтронография) подтвердили существование такой магнитной структуры в FeCl2, FeBr2, FeCO3 и др. М. Вследствие относительно слабой антиферромагнитной связи между слоями и не очень большой магнитной анизотропии самих слоев, внешние магнитные поля напряжённостью выше 5-10 кэ могут превратить слоистый М. в однородный намагниченный ферромагнетик (рис.).

Кривая намагничивания FeBr2 в мета-магнитном состоянии (J - намагниченность образца, , Н- напряжённость внешнего магнитного поля). В поле Н ~ 40 кэ (при 4,2 К) в FeBrz происходит фазовый переход 1-го рода в ферромагнитное состояние.

Фазовый переход 1-го рода, при к-ром векторы намагниченности всех слоев М. устанавливаются параллельно приложенному магнитному полю, наз. метамагнитным.

Часто термин "М." распространя