БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

МЕЩАНСКАЯ ДРАМА, жанр драма-тич. произведений.
МЛАДОАФГАНЦЫ, участники нац. патриотич. движения.
МОРАЛЬ (лат. moralis - нравственный, от mos, мн. ч. mores - обычаи, нравы, поведение).
МУДАНЬЦЗЯН, город на С.-В. Китая, в пров. Хэйлунцзян.
НАМПХО, город на С.-З. КНДР, в пров. Пхёнан-Намдо.
КРАСНАЯ ГОРБАТОВСКАЯ ПОРОДА крупного рогатого скота.
НИЖНИЕ ПЛАНЕТЫ, две большие планеты Солнечной системы - Меркурий и Венера.
ОБМЕН ТЕЛЕГРАФНЫЙ, суммарное количество телеграмм.
ОРЕНБУРГ (с 1938 по 1957 - Ч к а л о в), город, центр Оренбургской области РСФСР.
ПАНАМЕРИКАНСКИЙ COЮЗ, создан в 1889 на 1-й Панамериканской конференции.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

240186832560058839381 (см. также Хлоропреновые каучуки). Из ацетилена получают также акрило нитрил, винилхлорид, ацетальдегид, но во всех этих случаях ацетилен постепенно вытесняется более дешёвыми этиленом и пропиленом.

Ароматические углеводороды. Бензол, толуол, ксилолы, три-и тетраметилбензо-лы, нафталин являются ценным сырьём для синтеза MH. продуктов. Ароматич. углеводороды образуются в процессах каталитич. риформинга бензиновых и лигроиновых фракций. В значит, количествах эти соединения получаются попутно при пиролитич. произ-ве этилена. Бензол и нафталин получают также деалкилиро-ванием их алкилпроизводных в присутствии водорода. Для производства этим способом бензола используют алкиларо-матич. углеводороды (толуол, ксилолы, высшие алкилпроизводные) и бензины пиролиза. Сырьём для получения нафталина являются тяжёлые фракции риформинга, газойля каталитич. крекинга. Алкилированием бензола этиленом получают этилбензол, алкилированием пропиленом - изопропилбензол, превращаемые дигидрированием в ценнейшие мономеры для произ-ва каучуков - стирол и al-метилстирол. Из изопропилбензола при окислении воздухом получают в больших количествах фенол и ацетон. На основе алкилароматич. соединений синтезируют пластификаторы, смазочные масла и присадки к ним, поверхностноактивные вещества. Окислением ароматич. углеводородов получают терефталевую к-ту, служащую для производства волокон (лавсана), малеиновый и фталевый ангидрид, ценные пластификаторы и компоненты термостойких пластмасс (полиимиды). В меньших масштабах используется хлорирование, нитрование и др. реакции. Из хлорфенолов и хлор-нафталинов производят эффективные гербициды, растворители и изоляционные масла для трансформаторов. Бензил-хлорид используется для синтеза ряда соединений, содержащих бензильную группу (бензилавый спирт, его эфиры и пр.).


Нафтены. Из этих углеводородов только циклогексан приобрёл большое значение в H. с. В небольших количествах циклогексан выделяется чёткой ректификацией бензиновых фракций нефти (содержащих 1-7% циклогексана и 1-5% метилциклопентана). Метилциклопентан превращают в циклогексан изомеризацией с хлористым алюминием. Пром. потребность в циклогексане удовлетворяется в основном получением его гидрированием бензола в присутствии катализатора. Окислением циклогексана кислородом воздуха производят циклогексанони адипиновую к-ту, к-рые используются в произ-ве полиамидных синтетич. волокон (капрона и нейлона). Адипиновая к-та и др. дикарбоновые к-ты, получаемые при окислении циклогексана, используются для синтеза эфиров, применяемых в качестве смазочных масел и пластификаторов. Циклогексанон находит применение как растворитель, а также как заменитель камфоры.

Большое внимание уделяется развитию микробиологического синтеза на базе нефтяного сырья. Из парафиновых углеводородов получают белково-витаминные концентраты для питания животных.

Лит.: Наметкин С. С., Собр. трудов, 3 изд., т. 3, M., 1955; Новые нефтехимические процессы и перспективы развития нефтехимии, M., 1970; Новейшие достижения нефтехимии и нефтепереработки, пер. с англ., т. 9 - 10, M., 1970; Лебедев H. H., Химия и технология основного органического и нефтехимического синтеза, M., 1971; Черный И. Р., Производство мономеров и сырья для нефтехимического синтеза, M., 1973; Ж е р м е н Д ж., Каталитические превращения углеводородов, пер. с англ., M., 1972; Суханов В. П., Каталитические процессы в нефтепереработке, 2 изд., M., 1973; С и т т и г M., Процессы окисления углеводородного сырья, пер. с англ., M., 1970; В ы н т у В., Технология нефтехимических производств, пер. с рум., M., 1968; П л а т э А. Ф., Нефтехимия, M., 1967; Основы технологии и нефтехимического синтеза, под ред. А. И. Динцеса и Л. А. Пото-ловского, M., 1960.

H. С. Намёткин, В. В. Панов.

"НЕФТЕХИМИЯ", научный журнал, орган Отделения общей и технической химии АН СССР. Издаётся в Москве с 1961. Выходит 6 раз в год. Публикует работы по различным вопросам нефтехимии: состав и свойства нефти; углеводороды, их реакции и превращения; переработка газов, дистиллятов и остаточных нефтепродуктов; нефтехимический синтез; синтез и физико-химические свойства синтетических масел и присадок к топливам и маслам. Тираж (1974) 1560 экз.


НЕФТЕХРАНИЛИЩЕ, искусственный резервуар для хранения нефти или продуктов её переработки. По расположению различают H. наземные, полуподземные и подземные; по материалам, из к-рых они изготовляются, - метал-лич., железобетонные, а также подземные (сооружаемые в толще отложений кам. соли). В СССР распространены наземные металлические полуподземные железобетонные.

Наземные H. выполняют, как правило, металлическими (сварными). По форме бывают цилиндрич. (вертикальные, горизонтальные), сферич. и каплевидные.

Стальные вертикальные цилиндрические резервуары низкого давления ("атмосферного" типа) изготовляют с конусной кровлей, щитовой кровлей, сферическим покрытием. Резервуары с конусной кровлей изготовляются ёмкостью от 100 до 5000 м3 и предназначаются для хранения нефти и нефтепродуктов плотностью 0,9-1,0 т/л3 и внутренним давлением в газовом пространстве резервуаров 27 Kн/M2. Ёмкость резервуаров со щитовой кровлей от 100 до 20 000 л3, в них хранят нефтепродукты плотностью до 0,9 т/м3. Резервуары со сферич. покрытием крупнее по объёму (ёмкость до 50 000 м3) и предназначены для хранения нефтепродуктов с плотностью до 0,9 т/м3. К H. повышенного давления относятся вертикальные цилиндрич. резервуары, в к-рых внутр. давление в газовом пространстве от 27 до 93кн/M2. В стальных резервуарах спец. конструкций с плавающими стальными покрытиями, синтетич. понтонами, плавающей крышей, антикоррозионным покрытием и теплоизоляцией хранят светлые нефтепродукты.

Сферические резервуары применяются для хранения сжиженных газов и жидкостей. Для хранения газов под высоким давлением они сооружаются многослойными В СССР строятся (1974) сферические резервуары ёмкостью от 300 до 4000 м3, рассчитанные на давление 0,25- 1,8 Мн/см2 с внутр. диаметром от 9 до 20 м и толщиной стенки до 38 мм. Наибольшее распространение в СССР получили сферич. резервуары ёмкостью 600м3.

Полуподземные H. сооружают обычно из железобетона ёмкостью от 500 до 30 000 м3. Конструктивно они выполняются цилиндрич. (монолитные или со сборными стенкой и кровлей) и прямоугольными со сборными стенками и покрытием, а также траншейного типа.

Для межсезонного хранения нефтепродуктов (бензин, дизельное топливо, керосин) большое значение приобретают подземные ёмкости, сооружаемые в отложениях кам. соли на глубине от 100 м и ниже. Такие хранилища создаются путём размыва (выщелачивания)соли водой через скважины, к-рые используются впоследствии при эксплуатации хранилища. Макс, объём подземной ёмкости в СССР 150 тыс. м3. Освобождение хранилища от нефтепродуктов осуществляется закачкой насыщенного раствора соли.

История возникновения H. в России связана с развитием бакинской нефтяной пром-сти. В 17 в. с увеличением добычи нефти в Баку начали возникать нефтяные склады - земляные резервуары (ямы) в глиняных грунтах. Первый стальной клёпаный резервуар был построен в 1878 по проекту В. Г. Шухова и А. В. Бари. В 1935 впервые в СССР был сооружён металлич. сварной резервуар ёмкостью 1000 м3. Этот прогрессивный метод сооружения приобрёл известность и позволил в дальнейшем перейти на индустриальный метод изготовления основных частей резервуаров. Ёмкость отдельных H., построенных в СССР, достигает 50 000 л3. Ведутся (1974) работы по созданию резервуаров ёмкостью до 100 000 м3.

За рубежом наряду со строительством металлич. H. ёмкостью до 100 000 м3 решается проблема хранения большого количества нефти, нефтепродуктов и сжиженных газов путём создания новых типов ёмкостей с использованием естеств. и искусств, пустот в земной толще. Первое подземное хранилище в искусств, выработках залежей кам. соли для сжиженных газов построено в США в 1950. Ёмкость отд. H. в соляных пластах и куполах достигает 1,5 млн, м3. Крупные хранилища обычно состоят из неск. камер. Напр., подземное хранилище в штате Техас ёмкостью 905,7 тыс. м3 имеет шесть камер. Наблюдается тенденция строить H. значит, объёмов с большим количеством камер. Сооружаются (1974) подземные изотермич. хранилища для сжиженных газов. В Монреале (Канада) построено H. такого типа ёмкостью ок. 8000л3. Глубина H., сооружённых в отложениях кам. соли, колеблется от 200 до 1200 м и определяется в зависимости от наиболее высокого ожидаемого давления паров нефтепродукта или сжиженного газа внутри ёмкости. Поэтому глубина заложения подземного H. рассчитывается след, образом: на каждые 100 кн/м2 давления внутри ёмкости хранилище было заглублено на 4,5 м.

Лит.: Ч е р н и к и н В. И., Сооружение и эксплуатация нефтебаз, 2 изд., M., 1955; Титков В. И., Резервуары с плавающей крышей, M., 1957. В. П. Ефремов

НЕФТЕЧАЛА, город (до 1959 - посёлок), центр Нефтечалинского р-на Азерб. CCP. Расположен в 12 км к Ю. от устья р. Куры и в 9 км от ж.-д. станции Нефте-Чала (конечный пункт ветки от линии Астара - Османлы-Новые). 7,1 тыс. жит. (1970). Добыча нефти (транспортируется в Баку морем). Иодобромный з-д.

НЕФТЕЮГАНСК, город окружного подчинения в Ханты-Мансийском нац. округе Тюменской обл. РСФСР. Расположен на берегу протоки Оби - Юганская Обь, в 50 км к 3. от г. Сургута. 31,4 тыс. жит. (1973). Образован в 1967 на месте деревни Усть-Балык. Центр разработки Усть-Балыкского и др. нефтяных месторождений. Добыча нефти и газа.

НЕФТЬ, Нефть (через тур. neft, от перс, нефт)-горючая маслянистая жидкость со специфическим запахом, распространённая в осадочной оболочке Земли, являющая важнейшим полезным ископаемым. Обзуется вместе с газообразными углево, родами (см. Газы природные горючие обычно на глубинах более 1,2-2 км Вблизи земной поверхности H. преоразуется в густую малъту, полутвёрдый асфальт и др.


I. Общие сведения
H. состоит из различных углеводородов (алканов, циклоалканов, аренов- ароматич. углеводородов - и их гибридов) и соединений, содержащих, помимо углерода и водорода, гетероато-мы - кислород, серу и азот.

H. сильно варьирует по цвету (от светло-коричневой, почти бесцветной, до темно-бурой, почти черной) и по плотности - от весьма легкой (0,65-0,70 г/см3) до весьма тяжелой (0,98-1,05 г/см3). Пластовая H , находящаяся в залежах на значит глубине, в различной степени насыщена газообразными углеводородами. По химич. составу H. также разнообразны. Поэтому говорить о среднем составе H. или "средней" H можно только условно (рис. 1). Менее всего колеблется элементный состав 82,5 -87% С; 11,5-14,5% H, 0,05-0,35, редко до 0,7% О, 0,001 /5,3% S, 0,001- 1,8% N. Преобладают малосернистые H. (менее 0,5% S), но OK 1/3 всей добываемой в мире H. содержит св. 1% S.

Мировые (без социалистич. стран) разведанные запасы H. оценивались к нач. 1973 в 71,2 млрд. то (данные по запасам H., публикуемые за рубежом, возможно занижены) Запасы H. в недрах по странам и регионам распределяются крайне неравномерно (рис. 2).

Мировая добыча H. удваивается примерно каждое десятилетие. В 1938 она составляла ок. 280 млн. т, в 1950 OK 550 млн. то, в 1960 св. 1 млрд. то, а в 1970 св. 2 млрд. то. В 1973 мировая добыча H. превысила 2,8 млрд. то. В СССР в 1940 было добыто 31,1 млн. т, в 1973- 429 млн. т. Всего с начала пром. добычи (с кон. 1850-х гг.) до кон. 1973 в мире было извлечено из недр 41 млрд. то, из к-рых половина приходится на 1965-73.

Рис 2 Распределение мировых запасов нефти и её суммарной добычи в капиталистическом мире (по обзору "Бритиш петролеум компани", 1971).

Рис 3 Соотношение добычи и потребления нефти в капиталистических странах (по обзору ч Бритиш петролеум компани", 1971)

H занимает ведущее место в мировом топливно энергетич. хозяйстве. Ее доля в общем потреблении энергоресурсов непрерывно растет 3% в 1900, 5% перед 1-й мировой войной 1914- 1918, 17,5% накануне 2-й мировой войны 1939-45, 24% в 1950 и 41,5% в 1972. H. составляет основу топливно-энергетич. балансов всех экономически разви тых стран. В США на ее долю (включая газовый конденсат) приходится 46% общего потребления энергии (1972), в странах ЕЭС - св. 60% (1972), в Японии - 70% (1972). В СССР доля H в суммарной добыче топлива (в пере счете на условное топливо) составила 42,3% в 1972. Опережающий рост потребления жидкого топлива в развитых капиталистич. странах (США, страны Зап. Европы, Япония, Канада, Австралийский Союз), на долю к-рых приходится ев 4/5 потребления нефтепродуктов в мире (без социалистических стран), но ок. 10% разведанных запасов и ок. 30% ее добычи, привел к углублению геогр разрыва между районами добычи и потребления H (рис, 3).

Быстрый рост добычи H. в развивающихся странах (особенно на Ближнем и Cp. Востоке), за счет к-рых покрываются растущие пром. и воен.-стратегич. потребности развитых капиталистич. стран, оказывает решающее воздействие на нефт. хозяйство капиталистич. мира См. Нефтяные монополии.


П. Происхождение в условия залегания

В познания генетич. природы H. и условий ее образования можно выделить неск. периодов Первый из них (донауч-ный) продолжался до ср веков. Так, в 1546 Агрикола писал, что H и каменные угли имеют неорганич. происхождение; последние образуются путем сгущения и затвердевания H.

Второй период - науч. догадок - связывается с датой опубликования труда M В. Ломоносова "О слоях земных" (1763), где была высказана идея о дистилляционном происхождении H. из того же органич. вещества, к-рое дает начало каменным углям.

Третий период в эволюции знаний о происхождении H. связан с возникновением и развитием нефтяной промышленности. В этот период были предложены разнообразные гипотезы неорганич. (минерального) и органич происхождения H.

В 1866 франц. химик M Бертло высказал предположение, что H. образуется в недрах Земли при воздействии углекислоты на щелочные металлы. В 1871 франц. химик Г. Биассон выступил с идеей о происхождении H. путем взаимодействия воды, CO2, H2S с раскаленным железом. В 1877 Д. И. Менделеев предложил минеральную (карбидную) гипотезу, согласно к-рой возникновение H. связано с проникновением воды в глубь Земли по разломам, где под воздействием ее на "углеродистые металлы" - карбиды - образуются углеводороды и окись железа. В 1889 В. Д. Соколов изложил гипотезу космич. происхождения H. По этой гипотезе исходным материалом для возникновения H. служили углеводороды, содержавшиеся в газовой оболочке Земли ещё во время её звёздного состояния. По мере остывания Земли углеводороды поглотились расплавленной магмой. Затем, с формированием земной коры, углеводороды проникли в осадочные породы в газообразном состоянии, конденсировались и образовали H.

В 50-60-е гг. 20 в. в СССР (H. А. Кудрявцев, В. Б. Порфирьев, Г. H. Доленко и др.) и за рубежом (англ, учёный Ф. Хойл и др.) возрождаются различные гипотезы неорганич. (космич., вулка-нич., магматогенного) происхождения H. Однако на 6-м (1963), 7-м (1967) и 8-м (1971) Междунар. нефт. конгрессах неорганич. гипотезы не получили поддержки.

Важным для познания генезиса H. являлось установление в кон. 19 - нач. 20 вв. оптич. активности H., а также тесной связи H. с сапропелевым органич. веществом в осадочных породах. Сапропелевую гипотезу, высказанную впервые нем. ботаником Г. Потонье в 1904-05, в дальнейшем развивали рус. и сов. учёные - H. И. Андрусов, В. И. Вернадский, И. M. Губкин, H. Д. Зелинский и др. Сапропелевая гипотеза ассимилирована совр. теорией осадочно-миграцион-ного происхождения H. Развитию представлений о природе H. и условиях формирования её залежей способствовали также труды нем. учёного К. Энглера, амер. геологов Дж. Нъюберри, Э. Ортона, Д. Уайта, рус. и сов. учёных - Г. П. Михайловского, Д. В. Голубятникова, M. В. Абрамовича, К. И. Богдановича и др.

Четвёртый период характеризуется организацией широких геолого-геохимич. исследований, направленных на решение проблемы нефтеобразования и органически связанной с ней проблемы нефтемате-ринских отложений. В СССР такие работы осуществлены А. Д. Архангельским в 1925-26. В США аналогичные исследования начаты в 1926 П. Траском. В 1932 была опубликована классич. работа И. M. Губкина "Учение о нефти", сыгравшая огромную роль в развитии представлений о генезисе H. и формировании её залежей. В 1934 в H., асфальтах и ископаемых углях были найдены порфирины, входящие в молекулу хлорофилла и др. природных пигментов.

Начало пятого периода связано с открытием в 50-е гг. 20 в. (в СССР - А. И. Горской, в США - Ф. Смитом) нефт. углеводородов в осадках водоёмов различного типа (в озёрах, заливах, морях, океанах). Дальнейшему прогрессу в этой области способствовали работы MH. учёных и коллективов исследователей в разных странах: в СССР (А. Д. Архангельский, В. И. Вернадский, А. П. Виноградов, И. M. Губкин,H. M. Страхов, А. А. Трофимук, A. M. Акрамходжаев, И. О. Брод, H. Б. Вассоевич, В. В. Вебер, А. Ф. Добрянский, H. А. Ерёменко, А. Э. Конторович, M. Ф. Мирчинк, С. H. Неручев, К. Ф. Родионова, В. А. Соколов, В. А. Успенский и др.), в США (Ф. M. Ван-Тайл, К. Зобелл, У. Майн-шайн, А. Леворсен, Дж. Смит, Ф. Смит, Дж. Хант, X. Хедберг, Э. Эванс, П. Эй-белсон, Дж. Эрдман и др.), во Франции (Б. Тиссои др.), в ГДР (P. Майнхольд, П. Мюллер и др.), в ФРГ (M. Тайхмюл-лер, Д. Вельте и др.), а также в Японии, Великобритании и др. Убедительные доказательства биогенной природы нефте-материнского вещества были получены в результате детального изучения эволюции молекулярного состава углеводородов и их биохимич. предшественников (про-гениторов) в исходных организмах, в органич. веществе осадков и пород и в различных H. из залежей. Важным явилось обнаружение в составе H. х е м офоссилий - весьма своеобразных, часто сложно построенных молекулярных структур явно биогенной природы, т. е. унаследованных (целиком или в виде фрагментов) от органич. вещества. Изучение распределения стабильных изотопов углерода (С12, С13) в H., органич. веществе пород и в организмах (А. П. Виноградов, Э. M. Галимов) также подтвердило неправомочность неорганнч. гипотез. Было установлено, что H. - результат литогенеза. Она представляет собой жидкую (в своей основе) гидрофобную фазу продуктов фоссилизации (захоронения) органич. вещества (керогена) в водно-осадочных отложениях. Нефтеобразо-вание - стадийный, весьма длительный (обычно много млн. лет) процесс, начинающийся ещё в живом веществе. Выделяется ряд стадий: подготовительная, во время к-рой под влиянием биохимич. и биокаталитич. факторов образуется диффузно рассеянная в материнской породе H. (микронефть); главная, когда в результате битуминизации генерируется осн. масса микронефти, происходит её "созревание", сближение по составу с собственно H. и миграция в коллекторы, а по ним в ловушки; постумная, когда усиливается накопление низкомолекулярных углеводородов, обусловливающее образование обычно лёгкой газорастворённой H. - газоконденсата; постепенно газы становятся всё более "сухими" (т. е. богатыми CH4). И. M. Губкин выделял также стадию разрушения нефтяных месторождений.

Считается, что осн. исходным веществом H. обычно является планктон, обеспечивающий наибольшую биопродукцию в водоёмах и накопление в осадках органич. вещества сапропелевого типа, характеризующегося высоким содержанием водорода (благодаря наличию в керо-гене алифатич. и алициклич. молекулярных структур). Породы, образовавшиеся из осадков, содержащих такого типа органич. вещество, потенциально нефте-материнские. Чаще всего это глины, реже - карбонатные и песчано-алеври-товые породы, к-рые в процессе погружения достигают верхней половины зоны мезокатагенеза (см. Катагенез), где вступает в силу главный фактор нефтеобразования - длит, прогрев органич. вещества при темп-ре от 50 0C и выше. Верхняя граница этой главной зоны нефтеобразования располагается на глуб. от 1,3- 1,7 км (при ср. геотермич. градиенте 4 0С/100 м) до 2,7-3 км (при градиенте 2 0С/100 м) и фиксируется сменой буро-угольной степени углефикации органич. вещества каменноугольной. Гл. фаза нефтеобразования приурочена к зоне, где углефикация органич. вещества достигает степени, отвечающей углям марки Г (см. Каменный уголь). Эта фаза характеризуется значит, усилением термич. и (или) терм оката литич. распада полимер-липоидных и др. компонентов керогена. Образуются в большом количестве нефт. углеводороды, в т. ч. низкомолекулярные (C5- C15), почти отсутствовавшие на более ранних этапах превращения органич. вещества. Эти углеводороды, дающие начало бензиновой и керосиновой фракциям H., значительно увеличивают подвижность микронефти. Одновременно, вследствие снижения сорбционной ёмкости материнских пород, увеличения внутр. давления в них и выделения воды в результате дегидратации глин, усиливается перемещение микронефти в ближайшие коллекторы. При миграции по коллекторам в ловушки H. всегда поднимается, поэтому её макс. запасы располагаются на несколько меньших глубинах, чем зона проявления гл. фазы нефтеобразования (рис. 4), нижняя граница которой обычно соответствует зоне, где органич. вещество пород достигает степени углефикации, свойственной коксовым углям (К). В зависимости от интенсивности и длительности прогрева эта граница проходит на глубинах (имеются в виду макс, глубины погружения за всю геол. историю данной серии осадочных отложений) от 3-3,5 до 5-6 км.

Рис. 4. Распределение мировых запасов нефти (в крупных и средних месторождениях) по глубинам залегания (по H. Б.Вассоевичу, 1973): 1- интенсивность генерации нефти (в условных единицах); 2 - запасы нефти (%). ГЗН - главная зона нефтеобразовання.

H. находится в недрах в виде скоплений различного объёма от неск. мм3 до неск. десятков млрд. м3. Практич. интерес имеют залежи H., представляющие её скопления с массой от нескольких тыс. т и больше, находящиеся в пористых и проницаемых породах-коллекторах. Различают 3 осн. типа коллекторов: межгранулярные (гл. обр. песчаные и алевритовые породы), кавернозные (напр., карстово-кавернозные, рифогенные и др. известняки) и трещинные (карбонатные, кремнистые и др. трещиноватые породы). Залежь обычно располагается под слабопроницаемыми породами, слагающими покрышку.

Каждая залежь H. находится в ловушке, задержавшей мигрировавшие H. и газ и сохранявшей их в течение длит, времени. Можно выделить 3 осн. типа ловушек: замкнутые, полузамкнутые и незамкнутые. Первые 2 типа связаны с первичным выклиниванием (стратиграфич. несогласие, тектонич. экранирование) коллекторов (рис. 5) и поэтому именуются ловушками выклинивания. Незамкнутые ловушки являются гидравлическими - в них газ и H. удерживаются в сводовой части антиклинального перегиба слоя (весьма распространённый тип залежей H.) или выступа подземного рельефа (напр., захороненного рифа). Наиболее приподнятую часть ловушки иногда занимает газ ("газовая шапка"); в этом случае залежь наз. газонефтяной; под H. полагается вода. H. залегает на раз) глубинах, вплоть до 6-7 км, однако на глубине 4,5-5 км нефт. залежи чаще сменяются газовыми и газоконденсатными. Макс. число залежей H. располагается в интервале 0,5-3 км, а наибольшие запасы сосредоточены в пределах 0,8-2,4 км.


Рис 5 Различного типа залежи нефти в гидравлически незамкнутых (1 - 3) и замкнутых (4-6) ловушках / - пласто вые сводовые нефтяные и газонефтяные залежи 2 - массивная сводовая газонефтяная залежь 3 - нефтяная залежь в выступе палеорельефа, первичного (напр , рифа) или вторичного (эрозионного), 4 - нефтяная залежь, экранированная страти графическим несогласием, 5 - нефтяная залежь в ловушке первичного (фациального, литологического) выклинивания кол лектора, 6 - тектонически экранирован ная залежь нефти, а - нефть, б - газ, в - вода



III. Нефтегазоносные бассейны, области, районы, месторождения

Обязательным условием нефтеобразования явтяется существование крупных осадочных бассейнов, в процессе развития к рых осадки (породы), содержащие уперодистое органич вещество, могли при опускании достичь зоны, где осуществляется главная фаза нефтеобразования. Выделение осадочных бассейнов, являющихся родиной H , имеет большое значение при нефтегазогеочогич районировании территорий и акваторий Такие бассейны сильно варьируют по размерам - от неск тыс до неск млн км2, однако OK 80% их имеют площадь от 10 тыс до 500 тыс км2Всего в совр структурном плане Земли насчитывается (если исключить неботьшие, преим межгорные) OK 350 таких бассейнов Пром нефтегазоносность у становлена в 140 бассейнах, остальные являются перспективными По тектонич строению среди осадочных бассейнов различают внутриплатформенные (OK 30% ), внутри- складчатые (OK 35%), CKтадчато платформенные, или краевых прогибов (OK 15% ), периокеанические татформен-ные (OK 15%) и др К кайнозойским отложениям приурочено OK 25% всех известных запасов H. , к мезозойским - 55% , к палеозойским - 20% В предепах нефтегазоносных бассейнов выделяют нефтегазоносные области, районы и (или) зоны, характеризующиеся общностью строения и автономией

Месторождения H. явтяются осн низшей единицей районирования Это участки земной коры тощадью в десятки - сотни, редко тысячи км2 имеющие одну или неск залежей H. в ловушках (рис 6) Большей частью это участки, где H собирается путем боко вой или реже вертикальной миграции из зон нефтеобразования месторождений H., из них 15-20% газонефтяные.

В мире известно (1973) OK 28 тыс.

Рис. 6 Геологичес