БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

МЕЩАНСКАЯ ДРАМА, жанр драма-тич. произведений.
МЛАДОАФГАНЦЫ, участники нац. патриотич. движения.
МОРАЛЬ (лат. moralis - нравственный, от mos, мн. ч. mores - обычаи, нравы, поведение).
МУДАНЬЦЗЯН, город на С.-В. Китая, в пров. Хэйлунцзян.
НАМПХО, город на С.-З. КНДР, в пров. Пхёнан-Намдо.
КРАСНАЯ ГОРБАТОВСКАЯ ПОРОДА крупного рогатого скота.
НИЖНИЕ ПЛАНЕТЫ, две большие планеты Солнечной системы - Меркурий и Венера.
ОБМЕН ТЕЛЕГРАФНЫЙ, суммарное количество телеграмм.
ОРЕНБУРГ (с 1938 по 1957 - Ч к а л о в), город, центр Оренбургской области РСФСР.
ПАНАМЕРИКАНСКИЙ COЮЗ, создан в 1889 на 1-й Панамериканской конференции.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

240186832560058839381
29,2

1600

палеоген-неоген

песчаники

0,845

-





Ампа, 1963

137

113,6

2480

палеоген-неоген

песчаники

0,820

-





Индонезия



















Минас, 1944

987

779,6

730

палеоген-неоген

песчаники

0,860

0,1





Дури, 1941

294

261,1

300

палеоген-неоген

песчаники

0,918

-





Австралийский Союз



















Кингфиш, 1967

127

117,4

2575

палеоген-неоген

песчаники

0,793

-





Халибут, 1967

83

63,6

2290

палеоген-неоген

песчаники

0,811

-




Западная Европа



Великобритания



















Фотиз10, 1970

266

266

2440

палеоген

песчаники

0,837

-





Брент10, 1971

200

200

3200

палеоген

известняки

-

-





Норвегия



















Экофиск10, 1970

155

153,2

3300

мел

известняки

0,845

0,18




Примечание. Месторождения расположены в акваториях: 1-Суэцкий залив; 2 - Персидский залив; 3 - Мексиканский залив: 4-залив Кука; 5 -оз. Маракайбо; 6 -шельф Атлантического океана; 7 - Гвинейский залив; 8 - Южно-Китайское море; 9 -пролив Басса; 10 - Северное море.



Рис. 7. Схема заложения поисковых скважин а - сво-довые пластовые залежи; б - пластовые литологически экранированные залежи (1 - нефтенасыщенные песчаники; 2 - водонасыщенные песчаники; 3 - шток каменной соли).



Разведочный этап - завершающий в геологоразведочном процессе. Осн. цель этого этапа - подготовка месторождения к разработке. В процессе разведки должны быть оконтурены залежи, определены литологич. состав, мощность, нефтегазонасыщенность, коллекторские свойства продуктивных горизонтов, изучены изменения этих параметров по площади, исследованы физико-химич. свойства H., газа и воды, установлена продуктивность скважин. Количество разведочных скважин и расстояния между ними зависят от типа разведуемой структуры, её размера и степени неоднородности нефтегазоносных пород. При наличии нескольких нефтегазоносных горизонтов разведочное бурение экономически целесообразно вести по этажам (рис. 8). В этажи выделяются пром. объекты, отделённые друг от друга значительными глубинами. По завершению разведочных работ подсчитываются пром. запасы и даются рекомендации о вводе месторождения в разработку.

Эффективность поиска нефтяных месторождений характеризуется коэфф. открытий - отношением числа продуктивных площадей (структур) к общему числу разбурённых поисковым бурением площадей, ср. числом поисковых скважин, необходимым для открытия одного нового месторождения. Осн. показатель эффективности геологоразведочных работ (поискового и разведочного этапов) - стоимость разведки 1m H. (или 1 м3 газа). Др. показатели эффективности: прирост запасов на 1 м пробуренных поисковых и разведочных скважин или на одну скважину и отношение кочества продуктивных скважин к общего числу законченных строительством скважин. В СССР эффективность геологоразведочных работ на H. и газ по большинству показателей, как правило, выше, чем в США.

Рис. 8. Схема разделения разреза многопластового месторождения на этажи разведки: 1 - нефтенасыщенные песчаник 2 - водонасыщенные песчаники; 3 нефтенасыщенные известняки; 4 - водонасыщенные известняки.


V. Добыча

Почти вся добываемая в мире H. извлекается посредством буровых скважин, закреплённых стальными трубами высокого давления. Для подъёма H. и сопутствующих ей газа и воды на поверхность скважина имеет герметичную систему подъёмных труб, механизмов и запорной арматуры, рассчитанную на работу с давлениями, соизмеримыми с пластовыми (см. Пластовое давление). Добыче H. при помощи буровых скважин предшествовали примитивные способы: сбор её на поверхности водоёмов, обработка песчаника или известняка, пропитанного H., посредством колодцев.

Сбор H. с поверхности открытых водоёмов - это, очевидно, первый по времени появления способ добычи H., к-рый до нашей эры применялся в Мидии, Вавилонии и Сирии, в 1 в. в Сицилии и др. В России сбор H. с поверхности р. Ухты начат Ф. С. Прядуновым в 1745. В 1858 на п-ове Челекен и в 1868 в Кокандском ханстве H. собирали в канавах, по к-рым вода стекала из озера. В канаве делали запруду из досок с проходом воды в нижней части: H. накапливалась на поверхности.

Разработка песчаника или известняка, пропитанного H., и извлечение из него H. впервые описаны итал. учёным Ф. Ариосто в 15 в. Недалеко от Модены в Италии такие нефтесодержащие грунты измельчались и подогревались в котлах. Затем H. выжимали в мешках при помощи пресса. В 1819 во Франции нефтесодержащие пласты известняка и песчаника разрабатывались шахтным способом при помощи штолен иногда длиной св. 1 км. Добытую породу помещали в чан, наполненный горячей водой. После перемешивания на поверхность воды всплывала H., к-рую собирали черпаком. В 1833-45 на берегу Азовского м. добывали песок, пропитанный H. Песок помещали в ямы с покатым дном и поливали водой. Вымытую из песка H. собирали с поверхности воды пучками травы.

Добыча H. из колодцев производила с в Киссии (древней области между Ассирией и Мидией) в 5 в. до н. э. при помощи коромысла, к к-рому привязывалось кожаное ведро. Добыча H. из колодцев на Апшеронском п-ове известна с 8 в. Имеются письменные указания о добыче лёгкой H. из колодцев в Сураханах и тяжёлой в Балаханах в 10-13 вв. Подробное описание колодезной добычи H. в Баку дал нем. натуралист Э. Кемпфер в 17 в. Глубина колодцев достигала 27 м, их стенки обкладывались камнем или укреплялись деревом. В 1729 была составлена карта Апшеронского п-ова с указанием нефт. колодцев. В 1825 в Баку из 120 колодцев

Добыча нефти посредством скважин начала широко применяться с 60-х гг. 20 в. Вначале наряду с открытыми фонтанами (см. Фонтанная эксплуатация) и сбором H. в вырытые рядом со скважинами земляные амбары добыча H. из скважин осуществлялась также с помощью цилиндрич. вёдер с клапаном в днище или желонок (см. Тартание). Из механизированных способов эксплуатации впервые в 1865 в США была внедрена глубиннонасосная эксплуатация, к-рую в 1874 применили на нефтепромыслах в Грузии, в 1876 в Баку, в 1895 в Грозном. В 1886 В. Г. Шухов предложил компрессорную добычу нефти, к-рая была испытана в Баку (1897). Более совершенный способ подъёма H. из скважины - газлифт - предложил M. M. Тихвинский в 1914.

Процесс добычи H., начиная от притока её по продуктивному (нефтяному) пласту к забоям скважин и до внеш. перекачки товарной H. с промысла, можно разделить на три этапа. Первый - движение H. по пласту к скважинам благодаря искусственно создаваемой разности давлений в пласте и на забоях скважин (т. н. разработка нефтяной залежи или месторождения). Второй этап- движение H. от забоев скважин до их устьев на поверхности - эксплуатация нефтяных скважин. Третий этап - сбор H. и сопровождающих её газа и воды на поверхности, их разделение, удаление воды и минеральных солей из H. (т. н. подготовка H.), обработка пластовой воды перед закачкой в пласт при его заводнении или для сброса в промышленную канализацию (т. н. подготовка воды), закачка воды в пласт через нагнетательные скважины, сбор попутного нефтяного газа. Осуществление процесса добычи H. с помощью скважин и техно-логич. установок наз. эксплуатацией нефтяного промысла.

Разработка нефтяного месторождения. Под разработкой нефтяного месторождения понимается осуществление процесса перемещения жидкостей (H., воды) и газа в пластах к эксплуатационным скважинам. Управление процессом движения жидкостей и газа достигается размещением на месторождении нефтяных, нагнетательных и контрольных скважин, количеством и порядком ввода их в эксплуатацию, режимом работы скважин и балансом пластовой энергии. Принятая для конкретной залежи система разработки предопределяет технико-экономич. показатели - дебит H., изменение его во времени, коэфф.нефтеотдачи, капитальные вложения, себестоимость и т. д. Перед разбуриванием залежи проводят проектирование системы разработки. В проекте разработки на основании данных разведки и пробной эксплуатации устанавливают условия, при к-рых будет протекать эксплуатация залежи, т. е. её геологич. строение, коллекторские свойства пород (пористость, проницаемость, степень неоднородности), физ. свойства жидкостей и газов, насыщающих пласт (вязкость, плотность, растворимость газов и твёрдых углеводородов в H.), насыщенность пород H. водой и газом, пластовые давления, темп-pa и т. д. Базируясь на этих данных, при помощи гидродинамич. расчётов устанавливают технич. показатели эксплуатации залежи для различных вариантов системы разработки и производят экономич. оценку вариантов системы. В результате технико-экономич. сравнения выбирают оптимальную систему разработки.

Совр. системы разработки в большинстве случаев предусматривают нагнетание воды в пласт (в 1972 ок. 75% всей добычи по СССР приходилось на системы с искусств, заводнением). Применяются в основном два вида заводнения (см. Заводнение) - законтурное, или приконтур-ное (для относительно небольшого размера залежей), и разного вида внутри-контурные (для залежей ср. размера и крупных).

Наиболее распространены системы внутриконтурного заводнения, когда залежь в зависимости ог геологич. условий залегания разделяется нагнетательными скважинами на полосы, в к-рых располагаются пять или три ряда эксплуатационных скважин (рис. 9). Для более

Рис. 9. Схема расположения скважин при разработке нефти с заводнением пластов: / - внешний контур нефтеносности; 2 - внутренний контур нефтеносности; 3 - нагнетательные внутрикон-турные скважины; 4 - нагнетательные законтурные скважины; 5 - эксплуатационные скважины.

интенсивной эксплуатации иногда применяется площадное заводнение; в этом случае нагнетат. скважины располагаются по всей площади пласта. Расстояния между скважинами составляют от 400 до 800 м. На одном месторождении пробуривают от неск. десятков до неск. тысяч эксплуатационных скважин (в зависимости от размера месторождения). Общее число эксплуатационных скважин по СССР 62 079, нагнетательных скважин 9135 (на 1 янв. 1974). Воздействие на пласт интенсифицируют увеличением соотношения между числом нагнетательных и эксплуатационных скважин, а также созданием в пласте давления нагнетаемой воды значительно выше начального пластового, вплоть до значения горного давления.

Вытеснение H. водой при разработке залежей успешно применяется для H. с вязкостью в пластовых условиях до 0,15-0,2 з (0,015-0,02н-сек/м2). При больших вязкостях коэфф. нефтеотдачи существенно снижается, а расход воды на вытеснение единицы объёма H. увеличивается. Однако даже при низких вязкостях при вытеснении H. водой около половины геологич. запасов H. остается в недрах.

Ведутся работы по повышению нефтеотдачи пластов путём улучшения отмывающей и вытесняющей способности нагнетаемой воды, добавкой различного рода присадок - поверхностно-активных веществ, углекислоты, веществ, повышающих вязкость воды, что уменьшает неблагоприятное соотношение вязкостей H. и вытесняющей её жидкости. Изменение неблагоприятного соотношения вязкости осуществляют также понижением вязкости H. Этот способ может быть реализован нагнетанием в пласт теплоносителей (горячей воды или пара). В 70-х гг. вновь начали применять тепловое воздействие па пласт путём создания внутрипластового очага горения, впервые предложенного в СССР в нач. 30-х п. (см. Термическая нефтедобыча). Большие перспективы связаны со способом добычи H. при помощи сочетания заводнения с внутри-пластовым горением, к-рое поддерживается закачкой в пласт водовоздушных смесей. Проводятся (1974) теоретич. и экспериментальные исследования повышения нефтеотдачи путём вытеснения H. растворителями и системами, растворимыми одновременно в H. и в воде. При глубоком залегании пластов для повышения нефтеотдачи в ряде случаев успешно применяегся нагнетание в пласт газа высокого давления.

Разработку неглубоко залегающих пластов, насыщенных высоковязкой H., в нек-рых случаях осуществляют шахтным способом (см. Шахтная. добыча нефти).

Эксплуатация нефтяных скважин. Извлечение H. из скважин производится либо за счёт естеств. фонтанирования под действием пластовой энергии, либо путём использования одного из нескольких механизированных способов подъёма жидкости. Обычно в начальной стадии разработки месторождений преобладает фонтанная добыча, а по мере ослабления онтанирования скважину переводят на механизированный способ добычи. К механизированным способам относятся: газлифтный, или эрлифтный, и глубин-нонасосный (с помощью штанговых, по-гружных электроцентробежных, гидропоршневых и винтовых насосов). В СССР штанговые глубиннонасосные скважины составляют 69,1% всех эксплуатируемых скважин, 15,0% фонтанные, 11,8% скважины с погружными электроцентробежными насосами, 3,7% газлифтные скважины (1973). Развивающимися способами эксплуатации скважин являются газлифтный, значительно усовершенствованный в нач. 70-х гг., и способ, использующий погружные электроцентробежные насосы, к-рый позволяет отбирать из скважин большое количество жидкости (воды и H.). В США 8% скважин эксплуатируются фонтанным способом и 92% - механизированным (1972). На месторождениях H. Бл. Востока большая часть скважин эксплуатируется фонтанным способом.

Нефтяным промыслом наз. техноло-гич. комплекс, состоящий из скважин, трубопроводов и установок различного назначения, с помощью к-рых на месторождении осуществляют извлечение H. и сопровождающего её газа из недр Земли. Вся продукция скважин, состоящая из H. с попутным газом (и, как правило, с пластовой водой, в отдельных случаях с примесью песка), направляется по трубопроводу на групповую замерную установку, где производят замер количества поступающей из скважины H., определяют процент содержащейся в ней воды и количество попутного газа, приходящегося на 1 т добытой H. (т. н. газовый фактор). На основе этих замеров подсчитывают суточный дебит H. (в т) и газа (в м3) по каждой скважине в отдельности. К групповой установке подключают обычно 10-30 скважин. Суточная добыча H. на различных нефтепромыслах колеблется в широких пределах, достигая десятков тыс. т. Важным этапом процесса добычи H. является сепарация - отделение газа от H., производимое в газонефтяном сепараторе. Такие сепараторы группируют в одном или неск. пунктах промысла. H., освобождённая от попутного газа, поступает на промысловые установки для обезвоживания и обессоливания, где от неё отделяется пластовая вода с минеральными солями до остаточного содержания солей в товарной H. не более 50 мг на 1 л. Газ направляют потребителям или на газобензиновый завод для переработки. Обезвоживание и обессоливание осуществляется тепловым, химич. или электрич. способом. Значит, часть солей удаляется при обезвоживании с отделяемой водой, однако иногда требуется дополнит, обессоливание пропусканием H. через слой пресной воды. Отделённая от H. вода подвергается очистке для последующей закачки в пласты или сброса в канализацию. H. также стабилизируют, т. е. отбирают из неё наиболее летучие углеводородные фракции для сокращения потерь от испарения при транспортировке на нефтеперерабатывающие заводы. Процесс стабилизации заключается в нагреве нефти до 80-120 0C, отделении лёгких углеводородов и последующей их конденсации. Полученные при этом нестабильный бензин и газ направляются на газобензиновые заводы, находящиеся обычно вблизи нефт. промысла. Для уменьшения расхода топлива на нагревание и сокращения эксплуатационных расходов все три процесса - обезвоживание, обессоливание и стабилизацию - совмещают в установке комплексной подготовки H. Подготовкой наз. придание H. товарных кондиций. Товарная H. накапливается в резервуарах и из них откачивается в магистральные нефтепроводы или в ж.-д. цистерны для доставки к месту переработки. Эта принципиальная технологич. схема работы нефт. промысла может видоизменяться в зависимости ог продуктивности скважин, преобладающего способа эксплуатации, величин давления и темп-ры H. на устье скважин, физико-химич. свойств H., содержания в ней газа, воды и песка, а также от природных и климатич. условий.

Существенные дополнения в обычную технологич. схему промысла вносит применение газлифтного способа эксплуатации, при к-ром на промысле необходима газлифтная компрессорная станция с газо-распределит. и газосборными трубопроводами.

На месторождениях, разрабатываемых с помощью искусств, заводнения, сооружают систему водоснабжения с насосными станциями. Воду берут из естеств. водоёмов с помощью водозаборных сооружений или преим. используют сточные пластовые воды нефтепромысла после их очистки. В нек-рых случаях воду извлекают из водоносного пласта в нагнетательной скважине и перепускают её в продуктивный пласт, используя погруж-ной электроцентробежный насос. Для очистки закачиваемой в пласт воды от механич. примесей, микроорганизмов, солей железа, сероводорода и углекислоты на водоочистной установке её обрабатывают реагентами, подвергают отстою и пропускают через песчаные фильтры. Для создания напора при закачке воды в нагнетательные скважины на промысле сооружают кустовые насосные станции, к-рые подают воду через водораспреде-лит. батареи (для измерения и регулирования её расхода). Большое значение на нефтепромысле имеет борьба с потерями лёгких фракций. Наиболее эффективно она осуществляется при закрытой системе сбора H. на промысле, при к-рой H. на всём пути от скважины до откачки на нефтеперерабатывающий завод не имеет контакта с атмосферой (рис. 10).

В процессе нефтедобычи важное место занимает внутрипромысловый транспорт продукции скважин, осуществляемый по трубопроводам. От каждой скважины к групповой замерной установке подводится отд. трубопровод. Отсюда H. поступает в сборный трубопровод (промысловый коллектор) и далее на установки по её подготовке и в товарные резервуары промысла. Применяются две системы внутрипромыслового нефтетранспорта - самотёчные и напорные. При самотёчных системах, действующих на старых нефт. промыслах, движение H. из скважин происходит за счёт превышения отметки устья скважины над отметкой групповогс сборного пункта. При напорных системах достаточно собственного давления н устье скважин для подачи H. с газе к центр, сборному пункту промысла откуда H. подаётся в товарные резервуары, а газ - на потребление или переработку. На нефт. промыслах CCCР применяются неск. напорных схем нефтегазосбора: в Азербайджане и Туркмении распространена т. н. однотрубная схема Барояна и Везирова, на месторождениях Сибири - схема внутрипромыслового сбора и транспорта Гипровостокнефти.

Рис. 10. Схема автоматизированной высоконапорной системы промыслового сбора и подготовки нефти, газа и воды для больших по площади месторождений: / - трубопроводы от скважин; 2 - автоматизированная установка по замеру продукции; 3 - сборный коллектор для нефтегазоводяной смеси; 4 - первая ступень сепарации; 5 - трубопровод для подачи нефтеводяной смеси на центральный пункт обезвоживания; 6 - подача газа на газобензиновый завод; 7 - сепаратор - делитель потока жидкости для равномерного распределения эмульсии по сепараторам-деэмульсаторам; 8 - сепаратор-деэмульсатор; 9 - установка подготовки сточной воды; 10 - сборный водовод сточной воды; // - сборный нефтепровод товарной нефти; 12 - компрессорная станция; 13 - газобензиновый завод; 14 - герметизированные резервуары товарной нефти; 15 - нефтяной насос для создания дополнительного напора; 16 - автоматизированная установка сдачи товарной нефти "Рубин-4"; 17 - возврат некондиционной нефти на доочистку; 18 - насосная магистрального нефтепровода; 19 - магистральный нефтепровод; 20 - водяной насос.

Наряду с осн. технологии. оборудованием на нефт. промысле имеются системы технич. водо- и энергоснабжения, установки для очистки промысловых сточных вод (рис. 11), ремонтные мастерские, складские помещения и т. д.

При разработке нефт. месторождений, приуроченных к континентальным шельфам, создают морские нефтепромыслы.

На нефт. промыслах проводятся большие работы по автоматизации промысловых технологии. установок, широко распространяются индустриальные методы строительства технологич. установок. Создаются: групповые замерные установки, к-рые автоматически переключают скважины на замер, производят замер, контролируют состояние работы скважин и обеспечивают блокировку их при аварийных случаях; автоматизированные сепарационные установки; сепараторы-деэмульсаторы, где происходит одновременное отделение газа и воды; установки для обработки воды и попутного газа, для учёта и сдачи товарной H., а также кустовые насосные станции, моноблочные автоматич. газомотокомпрессоры. Развитие нефтепромыслового строительства основывается на внедрении заводского изготовления отд. транспортабельных блоков осн. технологич. оборудования, доставки блоков на промысел и монтирования их на месте. Это даёт возможность в неск. раз ускорить и удешевить сооружение важнейших технологич. установок.

Рис. 11. Схема очистки сточных вод нефтепромыслов по закрытой системе: / - напорный горизонтальный отстойник; 2 - дегазатор; 3 - напорный кварцевый фильтр; 4 - промежуточная ёмкость; 5 - насосы для подачи воды в систему заводнения; 6 - насос для промывки кварцевых фильтров; 7 - резервуар очищенной воды для промывки кварцевых фильтров; 8 - резервуар-отстойник для воды от промывки фильтров; 9 - насос для перекачивания воды после промывки фильтров; 10 - сброс ливневых вод. УПН - установка подготовки нефти; 11 - приёмная камера насоса; 12 - насос для перекачивания промышленных и ливневых вод в резервуар-отстойник; 13 - аварийная ёмкость; 14 - резервуар-отстойник для промышленных и ливневых вод; 15 - насос для перекачивания промышленных и ливневых вод на фильтрование или в поглощающие скважины.


VI. Химический состав и физические свойства. Технологическая характеристика

1.- сложная смесь алканов (парафиновые или ациклич. насыщенные углеводороды), нек-рых цикланов (нафтенов)ароматич. углеводородов различной молекулярной массы, а также кислородных, сернистых и азотистых соединений. Улеводородный состав H. изменяется в различных месторождениях. Бензиновые и керосиновые фракции большинства H. СССР характеризуются значительным содержанием алканов (св. 50%). Во фракциях отдельных H. преобладают нафтеновые углеводороды (50-75% ). Содержание ароматических углеводородов в бензиновых и керосиновых фракциях большинства H. колеблется от 3 до 15% и от 16 до 27% соответственно. Масляные дистилляты иногда значительно различаются по углеводородному составу. Наибольшим содержанием ароматич. углеводородов (в нек-рых случаях до 53-65%) отличаются фракции высокосернистых H. Часто H. характеризуются значит, содержанием твёрдых углеводородов, состоящих в основном из углеводородов нормального строения. Кислородные соединения содержатся в H. в виде нафтеновых кислот и асфаль-тово-смолистых веществ, состоящих из асфальтов и смол (на их долю приходится св. 90% содержащегося в H. кислорода). К сернистым соединениям относятся сероводород, меркаптаны, сульфиды, дисульфиды, тиофены, тиофаны, а также полициклич. сернистые соединения разнообразной структуры. Азотистые соединения - это в основном гомологи пиридина, гидропиридина и гидрохино-лина. Компонентами H. являются также газы, растворённые в H. (см. Газы нефтяные попутные), вода и минеральные соли. Газы состоят из углеводородов, содержащих в цепи 1-4 атома углерода; их содержание - в пределах от десятых долей процента до 3% (по массе). Содержание золы (минеральных веществ) в большинстве H. не превышает десятых долей процента (считая на H.). В составе нефт. золы найдены MH. элементы (Ca, Mg, Fe, Al, Si, V, Na и др.). По плотности H. делятся на 3 группы: на долю лёгких H. (с плотностью до 0,87 г/см3) в общемировой добыче H. приходится ок. 60% (в СССР -66%); на долю средних H. (0,871-0,910 г/см3) - в СССР ок. 28%, за рубежом -31%; на долю тяжёлых (более 0,910 г/см3) - соответс